Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Problem 4 (Cournot Uncertainty) Two firms compete to sell a good. Firm 1 has tot

ID: 1163605 • Letter: P

Question

Problem 4 (Cournot Uncertainty) Two firms compete to sell a good. Firm 1 has total costs of production C11)()2 and its costs are known to Firm 2. The total costs of Firm 2 depends on its type. If Firm 2 is of type L, its costs are CL(JL) = 2qL. If Firm 2 is of type H, its costs are CH (gr) = 2 (gr). Firm 2 knows its type. But Firm 1 only knows that Firm 2 can have either cost structure with equal probability. The inverse demand for the output produced by the two firms in this market satisfies: p(a + ga) = 10-2(a + g) output to produce in order to maximize their profits. Find the Bayes- Nash equilbrium of this game. Characterize the equilibrium output strategies for both firms. Find the market price for each of the two possible cost configurations.

Explanation / Answer

4) Firm 1

The demand function in the market is given as:P=10-2(q1+q2)

Firm 1 has total cost of production:TC1=q1^2+2q1

Total Revenue of firm 1:TR1=p.q1

={10-2(q1+q2)}.q1

=(10-2q1-2q2).q1

=10q1-2q1^2-2q1q2

Total Profit of firm 1:TP1=TR1-TC1

=(10q1-2q1^2-2q1q2)-(q1^2+2q1)

=10q1-2q1^2-2q1q2-q1^2-2q1

=8q1-2q1q2-3q1^2

Marginal Profit of firm 1 MP1 or dTP1/dq1=8-2q2-6q1

Based on the first orer condition for profit maximization for firm1,we get:-

MP1=0

8-2q2-6q1=0

-6q1=2q2-8

q1=(8-2q2)/6

q1=2(4-q2)/6

q1=(4-q2)/3

The above derived expression represents the best response function for firm 1.

Firm-2

Case:1-If firm 2 is type-L

The maret demand function is given as:P=10-2(q1+q2)

Total Cost of firm 2:C(L)=2q(L)

Total Revenue of firm 2:TR(L)=p.q(L)

={10-2(q1+q(L)}.q(L)

=(10-2q1-2q(L)).q(L)

=10q(L)-2q1q(L)-2q(L)^2

Total Profit of firm 2:TP(L)=TR(L)-C(L)

=(10q(L)-2q1q(L)-2q(L)^2)-2q(L)

=10q(L)-2q1q(L)-2q(L)^2-2q(L)

=8q(L)-2q1q(L)-2q(L)^2

Marginal Profit of firm 2 MP(L) or dTP(L)/dq(L)=8-2q1-4q(L)

Now again based on the first order condition of profit maximization for firm 2 type-L,we obtain:-

MP(L)=0

8-2q1-4q(L)=0

-4q(L)=2q1-8

4q(L)=8-2q1

4q(L)=2(4-q1)

q(L)=2(4-q1)/4

q(L)=(4-q1)/2

The above derived expression denotes the best response function for firm 2 and type-L

Firm-2

Case-2:If firm 2 is type-H

Again,

The demand function in the market is given as:P=10-2(q1+q2)

Firm 2 has total cost of production:C(H)=2q(H)^2

Total Revenue of firm 2:TR(H)=p.q(H)

={10-2(q1+q(H))}.q(H)

=(10-2q1-2q(H)).q(H)

=10q(H)-2q1q(H)-2q(H)^2

Total Profit of firm 2:TP(H)=TR(H)-C(H)

={10q(H)-2q1q(H)-2q(H)^2}-2q(H)^2

=10q(H)-2q1q(H)-2q(H)^2-2q(H)^2

=10q(H)-2q1q(H)-4q(H)^2

Marginal Profit of firm2 MP(H) or dTP(H)/dq(H)=10-2q1-8q(H)

Based on first order condition forprofit maximization for firm 2 type-H,we derive:-

MP(H)=0

10-2q1-8q(H)=0

-8q(H)=2q1-10

8q(H)=10-2q1

8q(H)=2(5-q1)

q(H)=2(5-q1)/8

q(H)=(5-q1)/4

Again,the above calculated expression represents the best reponse fucntion of firm 2 type-H

Now,recall that the best response function for firm1:q1=(4-q2)/3

If firm 2 is type-L it's best response function:q(L)=(4-q1)/2

Plugging the value of q(L) into the best response function of firm 1,we get:-

q1=(4-q(L))/3

q1={4-(4-q1)/2}/3

q1={(8-(4-q1))/2}/3

q1=(8-4+q1)/2/3

q1=(4+q1)/2/3

q1=(4+q1)/6

6q1=4+q1

6q1-q1=4

5q1=4

q1=4/5

Therefore,if firm-2 is type-L the Bayes-Nash equilibrium quantity of firm 1 is 4/5.

Now,again plugging the value of equilibrium q1 obtained into the best response function of firm 2 type-L,we get:-

q(L)=(4-q1)/2

q(L)=(4-4/5)/2

q(L)=(20-4)/5/2

q(L)=16/5.1/2

q(L)=8/5

Thus,the Nash equilibrium quantity of firm 2 type-L is 8/5.

Now,the best response function of firm 2 type-H:q(H)=(5-q1)/4

Thus,plugging the value of q(H) into the best response function of firm 1,we obtain:-

q1=(4-q(H))/3

q1=(4-(5-q1)/4)/3

q1=(16-(5-q1))/4/3

q1=(16-5-q1)/4/3

q1=(11-q1)/12

12q1=11-q1

12q1+q1=11

13q1=11

q1=11/13

Thus,the Bayes-Nash equilibrium quantity of firm 1 when firm 2 is type-H is 11/13.

Now,plugging back the value of q1 obtained above into the best response function of firm 2,we obtain:-

q(H)=(5-q1)/4

q(H)=(5-11/13)/4

q(H)=(65-11)/13/4

q(H)=(51/13).(1/4)

q(H)=51/52

Hence,the Nash equilibrium quantity of firm 2 type-H is 51/52.

Now,using the values of q1 and q(L) into the inverse demand function given,we get:-

P=10-2(q1+q(L))

P=10-2(4/5+8/5)

P=10-8/5-16/5

P=(50-8-16)/5

P=26/5

P=5.2

Thus,the equiibrium price in the market when firm 2 is of type-L is 5.2

Now,using the values of q1 and q(H) into the inverse demand function given,we get:-

P=10-2(q(1)+q(H))

P=10-2(11/13+51/52)

P=10-22/13-102/52

P=(520-88-102)/52

P=312/52

P=6

Hence,when firm 2 is of type-H the equilibrium market price is 6.

  

  

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote