Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Y = a R b S c T d The computer output from the regressions analysis is: DEPENDEN

ID: 1187466 • Letter: Y

Question

Y = a RbScTd

The computer output from the regressions analysis is:

DEPENDENT VARIABLE:

LNY

R-SQUARE

F-RATIO

P-VALUE ON F

OBSERVATIONS:

32

0.7766

32.44

0.0001

PARAMETER

STANDARD

VARIABLE

ESTIMATE

ERROR

T-RATIO

P-VALUE

INTERCEPT

-0.6931

0.32

-2.17

0.0390

LNR

4.66

1.36

3.43

0.0019

LNS

-0.44

0.24

-1.83

0.0774

LNT

8.28

4.6

1.80

0.0830

a. Are the parameter estimates statistically significant at the 90% level of confidence?

b. If R=1, S=2, and T=3, what will be the value of Y?

c. If R decreases by 10% (all other things constant), what will happen to Y?

DEPENDENT VARIABLE:

LNY

R-SQUARE

F-RATIO

P-VALUE ON F

OBSERVATIONS:

32

0.7766

32.44

0.0001

PARAMETER

STANDARD

VARIABLE

ESTIMATE

ERROR

T-RATIO

P-VALUE

INTERCEPT

-0.6931

0.32

-2.17

0.0390

LNR

4.66

1.36

3.43

0.0019

LNS

-0.44

0.24

-1.83

0.0774

LNT

8.28

4.6

1.80

0.0830

Explanation / Answer

Y = a RbScTd

ln Y = ln a + bo*ln R + b1*ln S + b2*ln T


a) Parameter estimates are statistically sifnificant at 90% confidence interval as the P-value < 0.1 and the calculated t ratios are greater than the tabulated values.


b) ln a is the intercept

ln Y = -0.6931 + 4.66*ln1 - 0.44*ln2 + 8.28*ln3

ln Y = 8.098

Y = 3289.28


c) Y = a RbScTd

ln Yo = -0.6931 + 4.66*lnRo - 0.44*lnSo + 8.28*lnTo

ln Y1 = -0.6931 + 4.66*ln0.9*Ro - 0.44*lnSo + 8.28*lnTo

lnY1 - lnYo = 4.66(ln0.9Ro-lnRo)

ln(Y1/Yo) = 4.66(ln(0.9Ro/Ro)

ln(Y1/Yo) = 4.66(ln(0.9)

ln(Y1/Yo) = 4.66*-.105

Y1/Yo = e^-.491

Y1 = .612Yo

% decrease in Y = (.612Yo-Yo)/Yo * 100% = 38.8%