Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Four objects—a hoop, a solid cylinder, a solid sphere, and a thin, spherical she

ID: 1367979 • Letter: F

Question

Four objects—a hoop, a solid cylinder, a solid sphere, and a thin, spherical shell—each have a mass of 5.05 kg and a radius of 0.243 m.

(a) Find the moment of inertia for each object as it rotates about the axes shown in this table.


(b) Suppose each object is rolled down a ramp. Rank the translational speed of each object from highest to lowest.

A.solid cylinder > thin spherical shell > solid sphere > hoop

B.solid sphere > solid cylinder > thin spherical shell > hoop    

C.hoop > solid cylinder > solid sphere > thin spherical shell

D.thin spherical shell > solid sphere > solid cylinder > hoop


(c) Rank the objects' rotational kinetic energies from highest to lowest as the objects roll down the ramp.
A. solid cylinder > thin spherical shell > solid sphere > hoop

B. hoop > thin spherical shell > solid cylinder > solid sphere

C. hoop > solid cylinder > solid sphere > thin spherical shell

D. thin spherical shell > solid sphere > solid cylinder > hoop

hoop     ___kg · m2 solid cylinder     ___ kg · m2 solid sphere     ___kg · m2 thin, spherical shell     ___ kg · m2

Explanation / Answer

given,

mass = 5.05 kg

radius = 0.243 m

moment of inertia of hoop = mass * radius^2

moment of inertia of hoop = 5.05 * 0.243^2

moment of inertia of hoop = 0.298 kg.m^2

moment of inertia of solid cylinder = 0.5 * mass * radius^2

moment of inertia of solid cylinder = 0.5 * 5.05 * 0.243^2

moment of inertia of solid cylinder = 0.149 kg.m^2

moment of inertia of solid sphere= (2 / 5) * mass * radius^2

moment of inertia of solid sphere = (2 / 5) * 5.05 * 0.243^2

moment of inertia of solid sphere = 0.119 kg.m^2

moment of inertia of spherical shell= (2 / 3) * mass * radius^2

moment of inertia of spherical shell = (2 / 3) * 5.05 * 0.243^2

moment of inertia of spherical shell = 0.198 kg.m^2

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote