A mortar* crew is positioned near the top of a steep hill. Enemy forces are char
ID: 1477178 • Letter: A
Question
A mortar* crew is positioned near the top of a steep hill. Enemy forces are charging up the hill and it is necessary for the crew to spring into action. Angling the mortar at an angle of = 54.0o (as shown), the crew fires the shell at a muzzle velocity of 204 feet per second. How far down the hill does the shell strike if the hill subtends an angle = 33.0o from the horizontal? (Ignore air friction.)
How long will the mortar shell remain in the air?
How fast will the shell be traveling when it hits the ground?
Explanation / Answer
along horizantal displacement = x = d*cosphi = d*cos33
initial speed = vox = vo*costheta
x = vox*T
T = x/vox = (d*cosphi)/(vo*costheta)
along vertical
displacement y = -d*sinphi
initial velocity = voy = vo*sintheta
y = voy *T + 0.5*ay*T^2
-d*sinphi = (vo*sintheta*d*cosphi)/(vo*costheta) - 0.5*g*d^2*(cosphi)^2/(vo^2*(costheta)^2)
-d*sinphi = (tantheta*d*cosphi)) - 0.5*g*d^2*(cosphi)^2/(vo^2*(costheta)^2)
-d*sin33 = (d*sin33*tan54)-(0.5*32*d^2*(cos33)^2)/(204^2*(cos54)^2))
d = 1653.6 feet
+++++++++++++++
T = (d*cos33)/(vo*cos54)
T = (1653.6*cos33)/(204*cos54)
T = 11.56 s
++++++++++++
v = voxi + voyi +ay*T
ay = -32 j
v = (204*cos54)i + (204*sin54)j - 32*11.56 j
v = 120i + 165j - 369.92j
v = 120i - 204.92 j
v = sqrt(120^2+204.92^2) = 237.5 feet/s
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.