Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Exercise 1: In a Compton scattering experiment, an x-ray photon scatters through

ID: 1495738 • Letter: E

Question

Exercise 1: In a Compton scattering experiment, an x-ray photon scatters through an angle of 13.0° from a free electron that is initially at rest. The electron recoils with a speed of 1,720 km/s.

(a) Calculate the wavelength of the incident photon.___________ nm

(b) Calculate the angle through which the electron scatters._____________ degrees

Exercise 2:  An electron has a kinetic energy of 3.85 eV. Find its wavelength. __________ nm

Exercise 3: (a) If the wavelength of an electron is 5.20 107 m, how fast is it moving? __________ km/s (b) If the electron has a speed equal to 6.60 106 m/s, what is its wavelength? ____________ m

Explanation / Answer

Given Data

Scattering angle of the photon, = 130

Speed of the electron, v = 1720 km/s

                                      = (1720 km/s)(103m / 1 km)

                                      = 1720 *103m/s

Let the wavelength of incident photon be and scattered photon be '

Solution:

(a) According to the conservation of energy

                                            h c / = h c / ' + 1/2 mev2

(6.63 *10-34J.s)(3.0 *108m/s) / =  (6.63 *10-34J.s)(3.0 *108m/s) / '+

                                                                     1/2 (9.11 *10-31kg) (1720 *103m/s)2

                                  [1/ - 1/ ' ] = 5.8253 *106

                                             1/ ' = 1/ -  5.8253 *106                          ...... (1)

-------------------------------------------------------------------------------------------------------

The compton shift is,

                        ' - = h / mec ( 1 - cos)

                       ' = [(6.63 *10-34J.s) / (9.11 *10-31kg)(3.0 *108m/s) ](1 - cos13) +

                            = 6.21758 *10-14+                                                 ...... (2)

Substitute the value of ' in equation (1),

                                   1/ (6.21758 *10-14+ ) =  1/ -  5.8253 *106  

On solving this equation, we get                         5.8253*1062+ 3.6219 *10-7 - 6.21758 *10-14= 0

                                                       = 1.033 *10-10m or -1.0328*10^-10 m---------------------------------------------------------------------------------------------------------- (b) From conservation of momentum principle we have,                          p ' sin = pe  sin                          h/' sin (11.8) = me  v sin                                    ...... (3)

From equation (2),

                        ' = 6.21758 *10-14+

                            = 6.21758 *10-14+ 1.0328*10-10m

                            = 1.033*10-9m

Now, taking equation (3),

                  (6.63 *10-34J.s) /(1.033 *10-9m) sin 13 = (9.11 *10-31kg)(1720 *103m/s) sin

                                                                                = 0.630

Excercise 2)

K.E. = hf = h*c/lambda

lambda = h*c / K.E. = 6.626 X 10^-34 * 3 X 10^8 / 3.85 X 1.6 X 10^-19 = 3.2269 x 10^-7 = 322.69 nm = 322.7 nm

Excercise 3)

a)

1/2*m*v^2 = h*c/lambda

v = sqrt(2*h*c/ m*lambda) = sqrt(2*6.626 x 10^-34 * 3x 10^8 / 9.1 x 10^-31 *5.20 x10^-7) = 0.916596 x 10^6 m/s

v = 916.6 km/s

b)

1/2*m*v^2 = h*c/lambda

lambda = 2hc/mv^2 = 2*6.626 x 10^-34 * 3 x 10^8 / 9.1 x 10^-31 * 6.6 x 10^6 * 6.6 x 10^6 = 0.100 x 10^-7 = 10.0 nm=1.0 x 10^-8 m