Two spheres, one with charge Q_1 = -3 Times 106-8 C and the other with charge Q_
ID: 1517908 • Letter: T
Question
Two spheres, one with charge Q_1 = -3 Times 106-8 C and the other with charge Q_2 = 5 Times 10^-8 C, are located 3m apart, as shown in the figure below. Point A is 1m from Q_1 and 2m from Q_2, and point B is 4m from Q_1 and 5m from Q_2. The angle Q_1-B-Q_2 is a right angle, and the angle Q_1-Q_2-B is 36.9 degree. What is the electric field at point A. and what is the electric field at point B? (Give your answers as either magnitudes and directions or in terms of x and y components.) What is the potential difference between points A and B?Explanation / Answer
A) Electric field = kq/d^2
At point A
E(at point A) = k ( Q1 ) / d1^2 + k ( Q2 ) / d2^2
Notice that this happens because the field from Q1 is towards Q1 (the negative direction), and the field from Q2 is also away from Q2 in negative direction.
k = 9e9
d1 = 1m
d2 = 2m
EA = 382.5 N/C
Now at point B
Electric field due to Q1 is towards Q1 ie in positive y direction
EQ1y = kQ1/d1^2 = 9e9*3e-8 / 4^2 = 16.875 N/C
EQ1x = 0
Electric field due to Q2 is away from Q2 ie in negative x-y direction
EQ2x = - kQ2/d2^2 * sin(36.9) = - 10.8 N/C
EQ2y = - kQ2/d2^2 * cos(36.9) = - 14.4 N/C
Ex = -10.8 N/C
Ey = 16.875 - 14.4 = 2.475 N/C
Hence EB = sqrt((-10.8)^2 + 2.475^2) = 11 N/C
B) Electric Potential is a scalar quantity
VA = k ( Q1 ) / d1 + k ( Q2 ) / d2 = -45 V [d1=1, d2=2]
VB = k ( Q1 ) / d1 + k ( Q2 ) / d2 = 22.5 V [d1=4, d2=5]
VB - VA = 22.5 - (-45) = 67.5 V
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.