Suppose that a particle of mass m_1 = Squareroot 2g, moving with initial speed v
ID: 1597272 • Letter: S
Question
Explanation / Answer
a) consider elastic collision,
m1=m2= sqrt2 g
it is given that after elastic collision one particle is travelling in the direction of m1 at 60 degree angle
now let us take momentum balance in x axis,
inital momentum = final momentum,
m1*u + m2*0 = m1* v1 cos(60) + m2*v2cos(theta)
=>u= v1cos(60) + v2cos(theta) ( m1= m2) ...............(1)
now ,
along the y axis we have ,
m1*0 + m2*0= m1*v1(sin(60) + m2*v2(sin(theta) .....(2)
now from conservation of kinetic energy,
m1u2 = m1V12 + m2V22 ...............(3)
so the equations are,
8x105 m/s = 0.5V1 +V2 cos(theta)
=> V2 cos(theta)= 8x105 m/s - 0.5V1 ..............(1)
0.866v1 + v2(sin(theta) =0
=>v2(sin(theta) = - (0.866v1 ).............(2)
(8x105 )2= V12 + V22 ................(3)
squaring and adding (1) and (2) we have
V22= (8x105 m/s - 0.5V1 )2 +( - (0.866v1 ))2 ...............(4)
substituting this in (3)
we get
(8x105 )2 = 2V12 -(8x105) V1 +(8x105 )2
=> V1= 0 , or V1= 4x105 m/s
now , V2= 6.92 x105m/s
theta= 30.03 degree
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.