A 14.5 m uniform ladder weighing 520 N rests against a frictionless wall. The la
ID: 1637483 • Letter: A
Question
A 14.5 m uniform ladder weighing 520 N rests against a frictionless wall. The ladder makes a 62.0 degree angle with the horizontal. Find the horizontal and vertical forces the ground exerts on the base of the ladder when an 810 N firefighter is 3.90 m from the bottom Magnitude of the horizontal force __________ Your response differs from the correct answer by more than 100%. Direction away from the wall towards the wall Magnitude of the vertical force ______ Direction down up If the ladder is just on the verge of slipping when the firefighter is 8.80 m up, what is the coefficient of static friction between ladder and ground? __________Explanation / Answer
Sum moments about the floor contact to find the wall reaction horizontal force.
Rw[14.5 sin 62] - 520[(14.5/2)cos62] - 810[3.9cos62] = 0
Rw = 254 N
Sum horizontal forces to zero shows that the horizontal floor reaction is 254 N toward the wall
Sum vertical forces to zero to find the floor vertical force
Fv - 520 - 810 = 0
Fv = 1330 N upward
===================================================================================
b) Using the same logic to find the horizontal reactions when the firefighter is higher
Rw[14.5 sin62] - 520[(14.5/2)cos62] - 810[8.80 cos62] = 0
Rw = Fh = 399.6 N =400N
The vertical reaction remains the same
Fv = 1330 N upward
coefficient of friction is the ratio of the maximum horizontal force to vertical force
= Fh / Fv
= 400 / 1330
= 0.300
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.