Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The tube of a Geiger counter consists of a thin conducting wire of radius 0.0012

ID: 1707805 • Letter: T

Question

The tube of a Geiger counter consists of a thin conducting wire of radius 0.00125 cm stretched along the axis of a conducting shell of radius 1.25 cm ?see figure). The wire and the cylinder have equal and opposite charges of 7.1 times 10-10 C disturbed along their length of 8.6 cm. Find a formula for the electric field in the space between the wire and the cylinder, pretend that the electric field is that of an infinitely long wire and cylinder. What is the magnitude of the electric field at the surface of the wire? A thin wire stretched along the axis of a cylindrical conducting shell. E =

Explanation / Answer

Both  wire  and cylinder  are conductors the charges resides  on their surfaces The  electric field  at  a  point  which  is  lies  between the cental  wire  and  the cylinder    let  us  constriuct a  gaussian  surface  of radiues  r  with respect  to tht  point  Applying  gauss  law  electric flux      =  2 *r L  *E  =  q_enclosed /epsilon epsilon  = 8.85*10^-12 N.m^2  /C^2   Here   L  = length  of the wire , The electric field at  that  point E  =  q_enc  /2 *r L   q_enl  = charge  of the conducting wire  = +7.1*10^-10  C   The direction  of electric field way from the wire   ----------------------------------------------------- The electric field at  the surface  of the wire here  r  = radius  of the wire  = 1.25*10^-5  m    Electric field  E  = q_enc  / 2*rL *epsilon = (7.1*10^-10  C ) / 2(1.25*10^-5 m)(0.086m)(8.85*10^-12 N.m^2  /C^2) E  = 1.18*10^7 N/C   i am unable  to see  the charge charge  given plz check it