2) Consider the following hollow, infinite, cylindrical, nonconducting shell of
ID: 1776772 • Letter: 2
Question
2) Consider the following hollow, infinite, cylindrical, nonconducting shell of inner radius ri and outer radius r2 with non- uniform charge distribution, +pr) por. An infinite line charge of linear density + is parallel to, and concentric with, the outer shell. Express all parts to this problem symbolically in terms of po, , r, n, r2 and fundamental constants. +p(r) Employ the following coordinate system. +2 Nonconductor Side View Cross Sectional View (a) By choosing an appropriate gaussian surface, symbolically find the electric field in the hollow space, ri>r>0 (b) By choosing an appropriate gaussian surface, symbolically find the electric field in the outer shell, r2 r>r. (c) Assume the electric potential at r rn is Vo. Symbolically find the electric potential for r. o0 e electric potential for ri >r>0 1, assuming the electrExplanation / Answer
given, hollow, infininte non conducting holoow shell
inner radius = r1
outer radius = r2
charge distribution, rho(r) = rhoo*r
line charge density of line = lambda
a. for r < r1, r > 0
consider a concentric cylinderic hollow gaussean surface at radius r
then
from gauss law
E*2*pi*r*l = qin/epsilon
but qin = lambda*l
hence
E = lambda/2*pi*r*epsilon ( where epsilon is permittivity of free space)
b. for r2 > r > r1
charge contained insider radius r of the cylinder = Q
dQ = rho*2*pi*r*l*dr = rhoo*2*pi*r^2*l*dr
Q = integrate dQ from r = r1 to r = r
Q = rhoo*2*pi*l*(r^3 - r1^3)/3
hence just like the previous part
from gauss' law
E*2*pi*r*l = qin/epsilon
qin = rhoo*2*pi*l*(r^3 - r1^3)/3 + lambda*l
hence
E = [rhoo*2*pi*(r^3 - r1^3)/3 + lambda]/2*pi*r*epsilon
c. we know that E = -dV/dr
hence
V = - integral E dr
V = [rhoo*2*pi*(r^3/3 - r1^3*ln(r))/3 + lambda*ln(r)]/2*pi*epsilon + K ( where K is constnat of integration)
V(r = r2) = Vo
Vo = [rhoo*2*pi*(r2^3/3 - r1^3*ln(r2))/3 + lambda*ln(r2)]/2*pi*epsilon + K
K = Vo - ([rhoo*2*pi*(r2^3/3 - r1^3*ln(r2))/3 + lambda*ln(r2)]/2*pi*epsilon)
V = [rhoo*2*pi*(r^3/3 - r1^3*ln(r))/3 + lambda*ln(r)]/2*pi*epsilon + Vo - ([rhoo*2*pi*(r2^3/3 - r1^3*ln(r2))/3 + lambda*ln(r2)]/2*pi*epsilon)
d. we know that E = -dV/dr
hence
V = - integral E dr
V = lambda*ln(r)/2*pi*epsilon + K ( where K is constant of integration)
V(r1) = [rhoo*2*pi*(r1^3/3 - r1^3*ln(r1))/3 + lambda*ln(r1)]/2*pi*epsilon + Vo - ([rhoo*2*pi*(r2^3/3 - r1^3*ln(r2))/3 + lambda*ln(r2)]/2*pi*epsilon)
hence
lambda*ln(r1)/2*pi*epsilon + K = [rhoo*2*pi*(r1^3/3 - r1^3*ln(r1))/3 + lambda*ln(r1)]/2*pi*epsilon + Vo - ([rhoo*2*pi*(r2^3/3 - r1^3*ln(r2))/3 + lambda*ln(r2)]/2*pi*epsilon)
K = [rhoo*2*pi*(r1^3/3 - r1^3*ln(r1))/3 + lambda*ln(r1)]/2*pi*epsilon + Vo - ([rhoo*2*pi*(r2^3/3 - r1^3*ln(r2))/3 + lambda*ln(r2)]/2*pi*epsilon) - lambda*ln(r1)/2*pi*epsilon
hence
V(r) = lambda*ln(r)/2*pi*epsilon + [rhoo*2*pi*(r1^3/3 - r1^3*ln(r1))/3 + lambda*ln(r1)]/2*pi*epsilon + Vo - ([rhoo*2*pi*(r2^3/3 - r1^3*ln(r2))/3 + lambda*ln(r2)]/2*pi*epsilon) - lambda*ln(r1)/2*pi*epsilon
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.