Find the parallel and perpendicular components of the acceleration. 10/4/201Y 14
ID: 1778512 • Letter: F
Question
Find the parallel and perpendicular components of the acceleration.
10/4/201Y 14. (10 points) Find the parallel and perpendicular components of the acceleration (that is relative to the velocity vector) given that u=-5 + 5 + 10 k and (a) (2.5 points) Find the unit vector associated with the velocity. Ilok (b) (2.5 points) Determine the magnitude of the parallel component of the acceleration relative to the velocity vector. (e) (2.5 points) Determine the vector a, 0.4( -11 +1.6 (d) (2.5 points) Determine the vector a. ,6 2. .ws 1 +.6yHJ .3Explanation / Answer
14. given velocity vector
v = -5i + 5j + 10 k
acceleration vector
a = -1 i - 1 j + 2k
|a| = sqroot(1 + 1 + 4) = sqroot(6)
a. velocity unit vector v' = v/|v| = (-5i + 5j + 10k)/sqroot(25 + 25 + 100) = (-i + j + 2k)/sqroot(6)
b. magnitude of parallel component of acceleration relative to velocity component = a.v/|v| = ap
ap = (-i - j + 2k).(-i + j + 2k)/sqr4oot(6) = 4/sqroot(6)
c. ap vectro = 4*v/sqroot(6)|v| = 4(-i + j + 2k)/6 = (-2i + 2j + 4k)/3
d. magnitude of perpendicular compoentn of acceleration, at = sqroot(|a|^2 - ap^2) = sqroot(6 - 16/6) = sqroot(20/6) = sqroot(10/3)
unit vector in this direction = at' = mi + nj + pk
(mi + nj + pk).(-5i + 5j + 10k) = 0
-m + n + 2p = 0
let m = 0.3
then n + 2p = 0.3
also, sqroot(m^2 + n^2 + p^2) = 1
0.09 + (0.3 - 2p)^2 + p^2 = 1
5p^2 - 1.2p -0.82 = 0
solving for p
p = -0.302
hence
n = 0.9048
so vector at' = sqroot(10/3)[0.3i + 0.9048j - 0.302k]
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.