Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

3. For a 2-body spinless elastic collision between equal masses (such as when pl

ID: 1795044 • Letter: 3

Question

3. For a 2-body spinless elastic collision between equal masses (such as when playing "pool" or "billiards"-but ignoring spin or "english" here), with one of the particles originally at rest, say the particles collide and fly off at some angle as shownm below. Use momentum and kinetic energy conservation to derive the total angle the balls fly off at (0, + 2 in the picture). HINT: Set up the momentum and kinetic energy conservation equations in two dimensions and then combine the two momentum equations to look like the kinetic energy equation-then the "math cancellation magic" happens and you have a beautiful solution Initial State y at rest m2X V. Final State y V.

Explanation / Answer


along y axis

piy = 0


Pfy = m1*v1*sinteta - m2*v2*sintheta2

Pfy = Piy


m1*v1*sinteta1 - m2*v2*sintheta2 =

m1 = m2

v1*sintheta1 = v2*sintheta2


v2 = v1*sintheta1/sintheta2................(1)

initial momentum Pix = m1*u1

after collision

along x axis


final momentum Pfx = m1*v1*costheta + m2*v2*costheta2

Pfx = Pix


m1*v1*costheta1 + m2*v2*costheta2 = m1*u1

m1 = m2


v1*costheta1 + v2*costheta2 = u1..............(2)

using 1 in 2


v1*costheta1 + v1*(sintheta1/sintheta2)*costheta2 = u1


v1*sintheta2*costheta1 + v1*sintheta1*costheta2 = u1*sintheta2

v1*sin(theta1 + theta2) = u1*sintheta2



squaring on both sides

v1^2(sintheta1+sintheta2)^2 = u1^2*(sintheta2)^2 ................(3)


from energy conservation

KEf = KEi

(1/2)*m1*v1^2 + (1/2)*m2*v2^2 = (1/2)*m1*u1^2

m1 = m2

v1^2 + v2^2 = u1^2

v2 = v1*(sintheta1/sintheta2)

v1^2 + v1^2*(sintheta1/sintheta2)^2 = u1^2


v1^2*( (sintheta1)^2 + (sintheta2)^2 ) = u1^2*(sintheta2)^2......(4)


3 = 4


(sin(theta1+theta2))^2 = ( (sintheta1)^2 + (sintheta2)^2 )


(sintheta1*costheta2)^2 + (costheta1*sintheta2)^2 + 2*(sintheta1*sintheta2*costheta1*costheta2) = ( (sintheta1)^2 + (sintheta2)^2 )


(sintheta1)^2 *(costheta2)^2 + ((costheta1)^2*(sintheta2)^2) + 2*(sintheta1*sintheta2*costheta1*costheta2) = ( (sintheta1)^2 + (sintheta2)^2 )

(sintheta1)^2*(1-(costheta2)^2) + (sintheta2)^2*( 1 - (costheta1)^2 ) = 2*(sintheta1*sintheta2*costheta1*costheta2)


(sintheta1)^2*(sintheta2)^2 + (sintheta2)^2*(sintheta1)^2 = 2*(sintheta1*sintheta2*costheta1*costheta2)


2*(sintheta1)^2*(sintheta2)^2 = 2*(sintheta1*sintheta2*costheta1*costheta2)


sintheta1*sintheta2 = costheta1*costheta2


tantheta1*tantheta2 = 1


tantheta1*tantheta2 = tantheta*tan(90-theta)


theta1 = theta

theta2 = 90 - theta


theta1 + theta2 = 90 <<<---------------ANSWER

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote