Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Using the indicated substitutions x^2=z, find a general solution of x^2y\'\'+ xy

ID: 1813475 • Letter: U

Question

                                Using the indicated substitutions x^2=z, find a general solution of x^2y''+ xy'+4(x^4-v^2)y=0 in terms of Jv and J-v.                                                          

                                
                                A.)  y=c1J2(x)+c2J-2(x)
                                
                                B.)  y=c1Jv(x) + c2J-v(x)
                                
                                C.)  y=c1J1/4(x)-c2J-1/4(x)
                                
                                 D.)  y=c1Jv(x^2)+c2J-v(x^2)                                                     

                                 E.)  None of the above; see Problem Work                             

Explanation / Answer

x^2 y''(x)+x y'(x)+4 (x^4-v^2) y(x) = 0 alternative forms.... 4 (v^2-x^4) y(x) = x (x y''(x)+y'(x)) x (x y''(x)+y'(x))-4 (v^2-x^4) y(x) = 0 -4 v^2 y(x)+4 x^4 y(x)+x^2 y''(x)+x y'(x) = 0 y(x) = c_1 Gamma(1-v) J_(-v)(x^2)+c_2 Gamma(v+1) J_v(x^2) so the correcct answer is "D"