Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

a) Perform 1D Stats on your five masses. b) Add a one gram systematic error by s

ID: 1836851 • Letter: A

Question

a) Perform 1D Stats on your five masses.

b) Add a one gram systematic error by shifting all five your mass values +1g. Repeat your 1D Stats and note what has and has not changed.

c) Reset and add a one gram systematic error to just your first two mass values. Repeat your 1D Stats and note what has and has not changed.

d) From the data alone, do you feel you would have been able to catch these systematic errors?

Section

(g)

(cm)

(cm)

(cm)

(cm)

(cm)

(cm3)

(g/cm3)

1

60.019

2.53

5.04

3.81

2.52

1.905

21.63011

2.774789

2

60.02

3.55

5.13

3.82

2.565

1.91

32.68982

1.836045

3

60.04

2.54

5.1

3.8

2.55

1.9

23.08112

2.60126

4

60.04

2.53

5.06

3.82

2.53

1.91

21.87989

2.744073

5

60.03

3.82

5.1

3.82

2.55

1.91

34.25532

1.752428

Section

(g)

(cm)

(cm)

(cm)

(cm)

(cm)

(cm3)

(g/cm3)

1

60.019

2.53

5.04

3.81

2.52

1.905

21.63011

2.774789

2

60.02

3.55

5.13

3.82

2.565

1.91

32.68982

1.836045

3

60.04

2.54

5.1

3.8

2.55

1.9

23.08112

2.60126

4

60.04

2.53

5.06

3.82

2.53

1.91

21.87989

2.744073

5

60.03

3.82

5.1

3.82

2.55

1.91

34.25532

1.752428

Explanation / Answer

From the above data, we can say if we will add the systematic error for all the data points, the average value will be increased by the amount what we add, the standrad deviation and the mean error will be unchanged. However it will change the mean value of gm/cm^3 too.

If we will add the systematic error to some specific points, then the average value, error, standard deviation in all the quantities will get changed.

Section (g) (cm) (cm) (cm) (cm) (cm) (cm3) (g/cm3) Error in mass 1 60.019 2.53 5.04 3.81 2.52 1.905 21.63011 2.774789 -0.0108 2 60.02 3.55 5.13 3.82 2.565 1.91 32.68982 1.836045 -0.0098 3 60.04 2.54 5.1 3.8 2.55 1.9 23.08112 2.60126 0.0102 4 60.04 2.53 5.06 3.82 2.53 1.91 21.87989 2.744073 0.0102 5 60.03 3.82 5.1 3.82 2.55 1.91 34.25532 1.752428 0.0002 Average 60.0298 2.994 5.086 3.814 2.543 1.907 26.707252 2.341719 -1.42109E-15 Error -1.42109E-15 Standard Deviation 0.010256705 0.637989 0.035777 0.008944 0.017889 0.004472136 6.22483089 0.504918304 here one can see clearly that average error is almost zero. Section (g) (cm) (cm) (cm) (cm) (cm) (cm3) (g/cm3) Error in mass 1 61.019 2.53 5.04 3.81 2.52 1.905 16.194277 3.767936043 -0.0108 2 61.02 3.55 5.13 3.82 2.565 1.91 44.738875 1.363914493 -0.0098 3 61.04 2.54 5.1 3.8 2.55 1.9 16.387064 3.72488934 0.0102 4 61.04 2.53 5.06 3.82 2.53 1.91 16.194277 3.769232797 0.0102 5 61.03 3.82 5.1 3.82 2.55 1.91 55.742968 1.094846618 0.0002 Average: 61.0298 2.994 5.086 3.814 2.543 1.907 29.8514922 2.744163858 -1.42109E-15 Mean error = -1.42109E-15 Standard deviation 0.010256705 0.637989 0.035777 0.008944 0.017889 0.004472136 19.01533964 1.386184868 Section (g) (cm) (cm) (cm) (cm) (cm) (cm3) (g/cm3) Error in mass 1 61.019 2.53 5.04 3.81 2.52 1.905 16.194277 3.767936043 0.5892 2 61.02 3.55 5.13 3.82 2.565 1.91 44.738875 1.363914493 0.5902 3 60.04 2.54 5.1 3.8 2.55 1.9 16.387064 3.663865595 -0.3898 4 60.04 2.53 5.06 3.82 2.53 1.91 16.194277 3.707482588 -0.3898 5 60.03 3.82 5.1 3.82 2.55 1.91 55.742968 1.076907136 -0.3998 Average: 60.4298 2.994 5.086 3.814 2.543 1.907 29.8514922 2.716021171 0 Mean error = 0 Standard deviation 0.538335583 0.637989 0.035777 0.008944 0.017889 0.004472136 19.01533964 1.369563524