A workpiece weighing 50 lb is clamped to a work table in readiness for a machini
ID: 1842332 • Letter: A
Question
Explanation / Answer
solution:
1)here for given arrangement total load supported by two bars is given by
W=weigh of clamp,table+weigh of workpiece+cutting force
W=250+50+25=325 lb
as two bars are symmetrically sharing load and this loading on each bar at centre of bar will create maximum displacement of bar
force on each bar at center=F=W/2=162.5 lb
2)where maximum displacement will be at centre of bar at distance of l=40 in and it is given as
dyallowable=F*L^3/(48*E*I)
F=162.5 lb
L=80 in
E=29*10^6 lb/in2
I=(pi/64)*D^4
dy=vertical limiting displacement is given by
dylimiting=1*10^-3 in
design factor=dylimiting/dyallowable
dyallowable=1*10^-3/2=0.5*10^-3 in
on putting all value we get that
dyallowable=F*L^3/(48*E*I)
(.5*10^-3)=(162.5*80^3)/(48*29*10^6*(pi/64)*D^4)
on solving we get that
D=7.0248 in
3)in this way minimum diameter of bars which are subjected to bending in simply supported case of beam as D=7.0248 in and this diameter is same for both the bars.
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.