Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Obtain the continuity equation in cylindrical coordinates by expanding the vecto

ID: 1861145 • Letter: O

Question

Obtain the continuity equation in cylindrical coordinates by expanding the vector form in cylindrical coordinates. To do this, make use of the following                relationships connecting the coordinates and the velocity components in cartesian and cylindrical coordinates:
                x = Rcos(theta)
                y = Rsin(theta)
                z = z
                u = u_(R)cos(theta) - u_(theta)sin(theta)
                v = u_(R)sin(theta) + u_(theta)cos(theta)
                w = u_(z)

                ***Key: "u_(r)" is a letter u with a subscript r. "u_(theta)" is a letter u with a subscript theta.

Explanation / Answer

x = r Cos theta

y = r sin theta


r = sqrt(x^2 + y^2)

theta = atan (y/x)


del r / del x = x/sqrt(x^2 + y^2)

del r / del y = y/sqrt(x^2 + y^2)


del theta / del x = -y/(x^2 + y^2)

del theta / del y = x/(x^2 + y^2)


Thus,


del r / del x = Cos theta

del r / del y = Sin theta

del theta / del x = -(Sin theta)/r

del theta / del y = (Cos theta)/r


Further,

del / delx = (del / delr)(delr / delx) + (del / del theta)(del theta / del x)

del / dely = (del / delr)(delr / dely) + (del / del theta)(del theta / del y)


Thus,

del / del x = (Cos theta)(del / del r) - ((Sin theta)/r)(del / del theta)

del/ del y = (Sin theta) (del / del r) + ((Cos theta)/r)(del / del theta)


del u / del x = (Cos theta)(del (u_(R)cos(theta) - u_(theta)sin(theta)) / del r) - ((Sin theta)/r)(del (u_(R)cos(theta) - u_(theta)sin(theta)) / del theta)


del u / del x = (del u_r / del r) + u_r/r


del v / del y = (Sin theta) (del (u_(R)sin(theta) + u_(theta)cos(theta)) / del r) + ((Cos theta)/r)(del (u_(R)sin(theta) + u_(theta)cos(theta)) / del theta)


del v / del y = (1/r) (del u_theta / del theta)


del w / del z


Continuity eqn: del u / del x + del v / del y + del w / del z = 0


Thus,


(del u_r / del r) + u_r/r + (1/r) (del u_theta / del theta) + (del w / del z ) = 0