Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Please Show all steps and work thank you! Find the solution of the given initial

ID: 1889900 • Letter: P

Question


Please Show all steps and work thank you!

Find the solution of the given initial value problem dy / dt - y = 2te2t, y(0) = 1; ty? + 2y = t2 - t + 1, y(1) = 1 / 2, t > 0; dy / dx = 2 - ex / 3 + 2y, y(0) = 0; y? = ty(4 - y) / 1 + t, y(0) = y0; dy / dt = 2(1 + t)(1 + y2), y(0) = 0.

Explanation / Answer

a) dy/dt - y = 2te^(2t) R(x) = e^(integ -1 dt) = e^-t yR(x) = integ R(x) 2te^(2t) dt ye^-t = integ e^-t 2t e^(2t) dt ye^-t = integ 2t e^t dt = 2e^t(t - 1) + c y = 2(e^2t)(t-1) + ce^t y(0) = 1 => 1 = c - 2 => c = 3 hence y = 2(e^2t)(t-1) + 3e^t b) ty' + 2y = t^2 - t + 1 y' + 2/t y = t - 1 + 1/t R(x) = e^(integ 2/t dt) = e^( 2 ln t) = e^( ln t^2) = t^2 yR(x) = integ R(x) (t - 1 + 1/t) dt yt^2 = integ t^2(t - 1 + 1/t ) dt yt^2 = integ t^3 - t^2 + t dt yt^2 = t^4/4 - t^3/3 + t^2/2 + c y = t^2/4 - t/3 + 1/2 + ct^-2 y(1) = 1/2 1/2 = 1/4 - 1/3 + 1/2 + c c = 1/12 hence y = t^2/4 - t/3 + 1/2 + t^-2/12 c) dy/dx = (2 - e^x)/(3 + 2y) (3 + 2y) dy = (2 - e^x) dx integ (3+2y) dy = integ (2 -e^x) dx 3y + y^2 = 2x - e^x + c y(0) = 0 => 0 = - 1 + c => c = 1 hence 3y + y^2 = 2x - e^x + 1 d) dy/dt = ty(4-y)/(1 + t) integ dy/(y(4-y)) = integ t /(1+t) dt integ dy/y^2(4y^-1 -1) = integ [(1 + t) - 1]/(1+ t) dt integ y^-2 /(4y^-1 -1) dy = integ 1 - 1/(1+ t) dt let y^-1 = x -y^-2dy = dx integ -dx/(4x - 1) = integ 1 - 1/(1 +t) dt - 1/4 ln(4x - 1) = t - ln(1 + t) + c - ln(4x -1) = 4t - 4ln(1 + t) + c substitute x back - ln(4y^-1 - 1) = 4t - 4ln(1+t) + c - ln((4-y)/y) = 4t - 4 ln(1 + t) + c ln (y/(4-y)) = 4t - 4ln(1+ t) + c y(0) = yo ln(yo/4 - yo) = c hence, ln(y/4-y) = 4t - 4ln(1 + t) + ln(yo/4 - yo) e) dy/dt = 2(1+t)(1+y^2) integ dy/(1+y^2) = integ 2(1+t) dt arctan y = 2t + t^2 + c y(0) = 0 c = arctan 0 = 0 hence arctan y = 2t + t^2 => y = tan(2t + t^2)

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote