Solve the initial value problem 9(t+1)dy/dt - 5y = 20t for t>-1 with y(0) = 11 P
ID: 1890873 • Letter: S
Question
Solve the initial value problem9(t+1)dy/dt - 5y = 20t
for t>-1 with y(0) = 11
Put the problem in standard form.
Then find the integrating factor p(t) = ?
and finally find y(t) = ?
Explanation / Answer
9(t + 1) dy/dt - 5y = 20 t with condition t > - 1 we divide by 9(t + 1) : y' - 5y/[ 9(t + 1) ] = 20 t / 9(t + 1) Integrating factor : µ = e^?( -5 / ( 9(t + 1) ) ) dt = e^( ln(t + 1)^(-5/9) ) = (t + 1)^(-5/9) ( the condition t > -1 goes with the ln(t + 1) ) y' (t + 1)^(-5/9) - 5y(t + 1)^(- 14/9) / 9 = 20 t (t + 1)^(- 14/9) / 9 d(y (t + 1)^(-5/9) ) = 20 t (t + 1)^(- 14/9) / 9 dt ? d(y (t + 1)^(-5/9) ) = ? 20 t (t + 1)^(- 14/9) / 9 dt + C y (t + 1)^(-5/9) = ( 9 + 5t ) (t + 1)^(- 5/9) + C y = ( 9 + 5t ) + C(t + 1)^(5/9) y(0) = 9 + C = 14 so C = 5 y(t) = 9 + 5t + 5(t + 1)^(5/9)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.