Find the Laplace transform, F(s), for each f(t) given below for t 0-. Express F(
ID: 1942882 • Letter: F
Question
Find the Laplace transform, F(s), for each f(t) given below for t 0-. Express F(s) as a single ratio of polynomials in s where the denominator polynomial is monic I.e., it has the value "1" (one) as the leading coefficient on the highest power of s. Your answer to each part must be in the following form: bmsn + bm-1sm-1 + ... + b2s + b0/sn + an-1sn-1 + ... + a1s + a0 Your final answers must be devoid of imaginary numbers or else lose 50 %. f(t) = 5e-1/0.04 - 6e-1/0.02 + 7 f(t) = 170sin(2pi60t-pi/5) f(t) = 9 - 3e-t cos(5t) f(t) = t2 e-4t + delta(t)Explanation / Answer
LT(e^t) = 1/(s-1)
LT(k) = k/s
LT (sinwt) = w/(s^2 +w^2)
LT(coswt) = s/(s^2 +w^2)
a) LT(f(t)) = 5/(s+1/0.04) -6 /(s+1/0.02) +7/s
=5/(s+25) -6/(s+50) +7/s
= (6s^2 +625s +8750)/(s^3 + 75s^2 +1250s)
b) f(t) = 170[sin (120t) * cos/5 - cos(120t) * sin/5]
= 170 * 0.81 * sin 120t - 170 * 0.59 * cos 120t
=137.7 sin 120t - 99.9 cos 120t
now LT(f(t)) = 137.7 * 120/(s2 + (120)2) - 99.9 s /(s2 + (120)2)
= 51911.67/(s2 + 144000) -99.9 s/((s2 + 144000) = (-99.9s + 51911.67)/(s2 + 144000)
c)LT(e^at * cos wt) = (s-a)/((s-a)^2 +w^2)
so LT(f(t)) = 9/s - 3 (s+8)/((s+8)^2 +5^2) = 9/s -(3s+24)/(s^2 +16s+89)
= (9s^2+144s +801 - 3s^2 -24s)/(s^3 + 16s^2+89s)
= (6s^2+120s +801)/(s^3 + 16s^2+89s)
d) LT(t^2) = 2/s^3
so LT( e^(-4t) * t^2) = 2/(s+4)^3
LT(delta(t)) = 1
=> LT(f(t)) = 2/(s+4)^3 +1
=> (s^3 + 12s^2 + 48s +66)/(s^3 + 12s^2 + 48s+ 64)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.