<p>A fish swimming in a horizontal plane has velocity <img title=\"varrowbold\"
ID: 1962590 • Letter: #
Question
<p>A fish swimming in a horizontal plane has velocity <img title="varrowbold" src="http://www.webassign.net/images/varrowbold.gif" alt="varrowbold" /><sub>i</sub> = (4.00 <img title="ihatbold" src="http://www.webassign.net/images/ihatbold.gif" alt="ihatbold" /> + 1.00 <img title="jhatbold" src="http://www.webassign.net/images/jhatbold.gif" alt="jhatbold" />) m/s at a point in the ocean where the position relative to a certain rock is <img title="rarrowbold" src="http://www.webassign.net/images/rarrowbold.gif" alt="rarrowbold" /><sub>i</sub> = (<span>12.0</span> <img title="ihatbold" src="http://www.webassign.net/images/ihatbold.gif" alt="ihatbold" /> − <span>2.00</span> <img title="jhatbold" src="http://www.webassign.net/images/jhatbold.gif" alt="jhatbold" />) m. After the fish swims with constant acceleration for <span>19.0</span> s, its velocity is <img title="varrowbold" src="http://www.webassign.net/images/varrowbold.gif" alt="varrowbold" /> = (<span>21.0</span> <img title="ihatbold" src="http://www.webassign.net/images/ihatbold.gif" alt="ihatbold" /> − <span>3.00</span> <img title="jhatbold" src="http://www.webassign.net/images/jhatbold.gif" alt="jhatbold" />) m/s. (a) What are the components of the acceleration of the fish?</p><table>
<tbody>
<tr>
<td><em>a<sub>x</sub></em> =</td>
<td><span class="qTextField"> <span class="box_num" title="Points: 0.5/0.5">1</span><input id="RN_1742818_3_0_1746378" dir="ltr" name="RN_1742818_3_0_1746378" size="10" type="text" value="0.89" /></span> <span id="RN_1742818_3_0_1746378_mark" class="waMark single mCorrect"> <span class="badgeWrap"> <span class="badge container"> </span></span></span>m/s<sup>2</sup></td>
</tr>
</tbody>
</table>
<table>
<tbody>
<tr>
<td><em>a<sub>y</sub></em> =</td>
<td><span class="qTextField"> <span class="box_num" title="Points: 0.5/0.5">2</span><input id="RN_1742818_3_1_1746378" dir="ltr" name="RN_1742818_3_1_1746378" size="10" type="text" value="-0.210" /></span> <span id="RN_1742818_3_1_1746378_mark" class="waMark single mCorrect"><span class="badgeWrap"><span class="badge container"> </span> </span> </span> m/s<sup>2</sup></td>
</tr>
</tbody>
</table>
<p><br /> (b) What is the direction of its acceleration with respect to unit vector <img title="ihatbold" src="http://www.webassign.net/images/ihatbold.gif" alt="ihatbold" />?<br /> <span class="qTextField"> <span class="box_num" title="Points: 0.5/0.5">3</span><input id="RN_1742818_3_2_1746378" dir="ltr" name="RN_1742818_3_2_1746378" size="10" type="text" value="346.72" /></span> <span id="RN_1742818_3_2_1746378_mark" class="waMark single mCorrect"><span class="badgeWrap"><span class="badge container"> </span> </span> </span> ° counterclockwise from the +<em>x</em>-axis<br /> <br /> (c) If the fish maintains constant acceleration, where is it at <em>t</em> = <span>26.0</span> s?</p>
<table>
<tbody>
<tr>
<td><em>x</em> =</td>
<td><span class="qTextField"> <span class="box_num" title="Points: 0.5/0.5">4</span><input id="RN_1742818_3_3_1746378" dir="ltr" name="RN_1742818_3_3_1746378" size="10" type="text" value="416.82" /></span> <span id="RN_1742818_3_3_1746378_mark" class="waMark single mCorrect"><span class="badgeWrap"><span class="badge container"> </span> </span> </span> m</td>
</tr>
</tbody>
</table>
<table>
<tbody>
<tr>
<td><em>y</em> =</td>
<td><span class="qTextField"> <span class="box_num" title="Points: 0.5/0.5">5</span><input id="RN_1742818_3_4_1746378" dir="ltr" name="RN_1742818_3_4_1746378" size="10" type="text" value="-46.98" /></span> <span id="RN_1742818_3_4_1746378_mark" class="waMark single mCorrect"><span class="badgeWrap"><span class="badge container"> </span> </span> </span> m</td>
</tr>
</tbody>
</table>
<p><br /> In what direction is it moving?<br /> <span class="qTextField"> <span class="box_num" title="Points: /0.5">6</span><input id="RN_1742818_3_5_1746378" dir="ltr" name="RN_1742818_3_5_1746378" size="10" type="text" value="-352.21" /></span><span id="RN_1742818_3_5_1746378_mark" class="waMark single mIncorrect"><span class="badgeWrap"><span class="badge container"> </span> </span> </span> ° counterclockwise from the +<em>x</em>-axis</p>
<p> </p>
<p>I got all but the direction,can any1 help me with it</p>
Explanation / Answer
Hello, I couldn't recognize your question very well, but I assumed the variables, and the solution is as follows: (a) a = (v-vi)/t = [(20.0 i - 5.00 j) - (4.00 i + 1.00 j)]/23 = [16i - 6j]/23 ax = 16.0/23.0 m/s2 ay = -6.0/23.0 m/s2 (b) tan^-1(-6/16) = -20.56° -20.56° + 360° = 339.44° (c) r = ri + (vi)t + (1/2)at^2 = (10.0 i - 4.00 j) + 25(4.00 i + 1.00 j) + (25.0^2)(1/2)[16.0i - 6.0j]/23 = (10.0 i - 4.00 j) + (100.00 i + 25.00 j) + (625)[8.0i - 3.0j]/23 = (110.00 i + 21.00 j) + [217i - 81.5j] = (327i - 60.5j) m x = 327 m y = -60.5 m v = vi + at = (4.00 i + 1.00 j) + 25[16i - 6j]/23 = (21.4i - 5.5j) m/s tan^-1(-5.5/21.4) = -14.5° -14.5° + 360° = 345.5°
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.