Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Given two aid random variables, X_1 ~ U(0, 1), and X_2 ~ U(0, 1). A new set of r

ID: 1995811 • Letter: G

Question

Given two aid random variables, X_1 ~ U(0, 1), and X_2 ~ U(0, 1). A new set of random variables are generated from the following mapping: {W_1 =^delta squareroot -2 ln (x_1) cos (2 pi X_2) W_2 =^delta squareroot -2 ln (X_1) sin (2 pi X_2), Find the joint pdf of random variables W_1 and W_2, f_W_1, W_2 (w_1, w_2) = ? Find the marginal pdfs f_w_1 (w_1) = ? and f_w_1(w_2) = ? Prove the new random variables are iid Gaussian distributed N(0, 1) Using MATLAB to verily the above using pdfs, histograms.

Explanation / Answer

close all; clear all; clc;
N = 10^5; % number of samples
X1 = rand(1,N); % uniformly distributed random X1 variable between 0 and 1
X2 = rand(1,N); % uniformly distributed random X2 variable between 0 and 1
W1 = sqrt(-2.*log(X1)).*cos(2.*pi.*X2); % generated new variable
W2 = sqrt(-2.*log(X1)).*sin(2.*pi.*X2); % genrated new variable
Z = randn(1,N); % normal distributed random variable Z with mean 0 and variance 1

%% plotting of the PDF of W1

[Bin_height_W1, Bin_center_W1] = hist(W1,30);
pdf_W1 = Bin_height_W1./trapz(Bin_center_W1, Bin_height_W1); % generating
% pdf from histogram using trapezoidal integration
plot(Bin_center_W1, pdf_W1, '-rs', 'LineWidth',1, 'MarkerSize', 4); hold on

%% ploting of PDF of W2

[Bin_height_W2, Bin_center_W2] = hist(W2,30);
pdf_W2 = Bin_height_W2./trapz(Bin_center_W2, Bin_height_W2); % generating
% pdf from histogram using trapezoidal integration
plot(Bin_center_W2, pdf_W2, '-ko', 'LineWidth', 1, 'MarkerSize', 4);

%% plotting of PDF of plot Z

Bin_height_Z, Bin_center_Z] = hist(Z,30);
pdf_Z = Bin_height_Z./trapz(Bin_center_Z, Bin_height_Z);
plot(Bin_center_Z, pdf_Z, '-mv', 'LineWidth', 1, 'MarkerSize', 4);
xlabel('variables', 'FontSize', 15);
ylabel('pdf', 'FontSize', 15);
legend('pdf-W1','pdf-W2','pdf-normal distribution(0,1)');

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote