A proton moves through a uniform magnetic field given by ModifyingAbove Upper B
ID: 1997274 • Letter: A
Question
A proton moves through a uniform magnetic field given by ModifyingAbove Upper B With right-arrow equals left-parenthesis 5.15ModifyingAbove i With caret minus 17.8ModifyingAbove j With caret plus 25.3ModifyingAbove k With caret right-parenthesis mT. At time t1, the proton has a velocity given by v Overscript right-arrow EndScripts equals v Subscript x Baseline i Overscript caret EndScripts plus v Subscript y Baseline j Overscript caret EndScripts plus left-parenthesis 1.98 km/s right-parenthesis k Overscript caret EndScripts and the magnetic force on the proton is Upper F Overscript right-arrow EndScripts Subscript Upper B Baseline equals left-parenthesis 5.47times 10 Superscript negative 17 Baseline Upper Nright-parenthesis i Overscript caret EndScripts plus left-parenthesis 1.58times 10 Superscript negative 17 Baseline Upper Nright-parenthesis j Overscript caret EndScripts . (a) At that instant, what is vx? (b) At that instant, what is vy?
Explanation / Answer
B = 5.15 i -17.8 j + 25.3 k
v = vx i + vy j +(1.98km/s) k
= vx i + vy j + 1980 k
F = (5.47x10 -17 ) i +(1.58x10 -17) j
We know F = q ( v X B ) Where q = charge of proton = 1.6 x10 -19 C
v X B = i j k
vx v y 1980
5.15 -17.8 25.3
= i[25.3vy +(1980x17.8)] -j [25.3vx -(1980x5.15)] + k[-17.8 vx -5.15 vy ]
= i [25.3 vy +35244] - j[25.3 vx - 10197] -k[ 17.8vx +5.15 vy ]
q(vXB) = (1.6x10 -19 ) { i [25.3 vy +35244] - j[25.3 vx - 10197] -k[ 17.8vx +5.15 vy ]}
F = (1.6x10 -19 ) { i [25.3 vy +35244] - j[25.3 vx - 10197] -k[ 17.8vx +5.15 vy ]}
(5.47x10 -17 ) i +(1.58x10 -17) j = (1.6x10 -19 ) { i [25.3 vy +35244] - j[25.3 vx - 10197] -k[ 17.8vx +5.15 vy ]}
compare we get , (1.6x10 -19 ) [25.3 vy +35244]= (5.47x10 -17 )
[25.3 vy +35244] = 341.875
25.3vy = -34902.125
vy = -1379.53 m/s
= -1.37953 km/s
(1.6x10 -19 )[25.3 vx - 10197] = (1.58x10 -17)
[25.3 vx - 10197] = 98.75
25.3vx = 10295.75
vx = 406.94 m/s
= 0.40694 km/s
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.