Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Consider 7 particles in a simple harmonic oscillator potential Ei = n_ih omega (

ID: 1998175 • Letter: C

Question

Consider 7 particles in a simple harmonic oscillator potential Ei = n_ih omega (ni = 0.1, 2, ...) with a total energy of 7h omega. For the two cases Spin 3/2 fermions Spin 0 bosons Enumerate the microstates. Compute the probability that a measurement of a single particle will yield 3hw. A good way to list microstates is by the number of particle's in each state of ascending energy, e.g. (4, 1, 0, 2, 0, 0, 0, 0) corresponds to 4 particles of energy 0, 1 of hw and two of energy 3h omega. From such a list (assumed accurate), or a table with the same information, computing probabilities is straightforward.

Explanation / Answer

b) For Bosons, finding the number of states is equivalent to finding partitions of 7.

7+0+0+0+0+0+0    DENOTES one particle in n=7 state and other particles in n=0 state.

So the microstates thus obtained are listed below.

1) 7+0+0+0+0+0+0

2) 6+1+0+0+0+0+0

3) 5+2+0+0+0+0+0

4) 4+3+0+0+0+0+0

5) 5+1+1+0+0+0+0      ***

6) 4+2+1+0+0+0+0      ***

7) 3+2+2+0+0+0+0      ***

8) 3+3+1+0+0+0+0      ***

9) 4+1+1+1+0+0+0      ***

10) 3+2+1+1+0+0+0      ***

11) 2+2+2+1+0+0+0       ***

12) 2+1+1+1+1+1+0

13) 1+1+1+1+1+1+1

14) 3+1+1+1+1+0+0      ***

15) 2+2+1+1+1+0+0      ***

The Probability of each microstate=1/15

Probability of each microstate having a particle of energy 3hw = n/7   where n is the number of particles in 3rd state

Total Probablity=1/15*1/7*(1+1+2+1+1)=6/105

a)For a 3/2 fermion each state cannot be occupied by more than 4 particles. Therefore only the states with *** given above are possible

The Probability of each microstate=1/9

Probability of each microstate having a particle of energy 3hw = n/7   where n is the number of particles in 3rd state

Total Probablity=1/9*1/7*(1+2+1+1)=5/54

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote