Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1. Suppose we have a uniform magnetic field, B, directed into the plane of the d

ID: 2013752 • Letter: 1

Question

1. Suppose we have a uniform magnetic field, B, directed into the plane of the diagram below, whose magnitude varies sinusoidally as indicated. Immersed in this magnetic field is the circuit shown, which consists of a circular loop of radius r, connected to a resistor, R, through a pair of wires that are close together, and essentially out of the region of magnetic field.

a) Derive an expression for the current, I, induced in the resistor, R, as a function of time.

b) Derive an expression for the magnitude of the induced magnetic field, B, at the center of the loop as a function of time (use the Biot-Savart Law).

c) What is the amplitude of the induced magnetic field, BMAX, at the center of the loop? (when the sinusoidal time dependent term is one)

Explanation / Answer

   Given:
  Magnetic field  has the form = B = Bo sinwt 
  circular loop radious = r
  thus,Area of the loop = A= r2
 (a)
  It is known by the formual , for
 induced emf in the circuit is :
  emf = - e = - dB /dt
                   = -d (BA) / dt
                   = A d/dt (B)
                   = - A w Bocoswt
   If R be the resistence connected
   this, induced  current = I = e /  R
                                     = (-A w cos Bo wt ) /(R )
        thus,induced current : I = (A w Bo  /R )  cos wt
    I = r2 (w  Bo /R )  cos wt
         (this is in the function in the time )
     (b)
   Thus, Magnitude of the Magnetic field due this induced
   currrent circulates in the loop given by the formual as ;
   Induced Magnetic field :   B = o I / 2 r
           B  =   o I / 2 r          
                  = (  o  r2 w Bo / 2 r R )   cos wt    
 
                  = (  o  rw Bo  / 2  R )   cos wt    
   (c)
  
     Maximum induced emf :
      BMAX  = (  o A w Bo  / 2 r R )   cos wt   
    If time depending term is 1
     i.e coswt  = 1
   then ,       BMAX   = (  o  rw  Bo / 2  R )           
        
      
  
    Magnetic field  has the form = B = Bo sinwt    circular loop radious = r   thus,Area of the loop = A= r2
 (a)
  It is known by the formual , for
 induced emf in the circuit is :
  emf = - e = - dB /dt
                   = -d (BA) / dt
                   = A d/dt (B)
                   = - A w Bocoswt
   If R be the resistence connected
   this, induced  current = I = e /  R
                                     = (-A w cos Bo wt ) /(R )
        thus,induced current : I = (A w Bo  /R )  cos wt
    I = r2 (w  Bo /R )  cos wt
         (this is in the function in the time )
     (b)
   Thus, Magnitude of the Magnetic field due this induced
   currrent circulates in the loop given by the formual as ;
   Induced Magnetic field :   B = o I / 2 r
           B  =   o I / 2 r          
                  = (  o  r2 w Bo / 2 r R )   cos wt    
 
                  = (  o  rw Bo  / 2  R )   cos wt    
   (c)
  
     Maximum induced emf :
      BMAX  = (  o A w Bo  / 2 r R )   cos wt   
    If time depending term is 1
     i.e coswt  = 1
   then ,       BMAX   = (  o  rw  Bo / 2  R )           
        
      
  
   (a)   It is known by the formual , for  induced emf in the circuit is :   emf = - e = - dB /dt                    = -d (BA) / dt                    = A d/dt (B)                    = - A w Bocoswt    If R be the resistence connected    this, induced  current = I = e /  R                                      = (-A w cos Bo wt ) /(R )         thus,induced current : I = (A w Bo  /R )  cos wt     I = r2 (w  Bo /R )  cos wt          (this is in the function in the time )      (b)    Thus, Magnitude of the Magnetic field due this induced    currrent circulates in the loop given by the formual as ;    Induced Magnetic field :   B = o I / 2 r            B  =   o I / 2 r                             = (  o  r2 w Bo / 2 r R )   cos wt                         = (  o  rw Bo  / 2  R )   cos wt        (c)         Maximum induced emf :       BMAX  = (  o A w Bo  / 2 r R )   cos wt        If time depending term is 1      i.e coswt  = 1    then ,       BMAX   = (  o  rw  Bo / 2  R )