A continuous time signal is given below: x(t) = 10 + 3 sin (20 pi t + pi/3) + 5
ID: 2080841 • Letter: A
Question
A continuous time signal is given below: x(t) = 10 + 3 sin (20 pi t + pi/3) + 5 cos(40 pi t) a. This is sampled at t = 0.01 n to get a the discrete-time signal x[n], which is then applied to an ideal DAC to obtain a reconstructed continuous time signal y_r(t). i. Determine x[n] and graph its samples, using Matlab, along with the signal x(t) in one plot, plot a few cycles of x(t). ii. Determine the reconstructed signal, y_r(t), as a sinusoidal signal and compare it to x(t). b. Repeat part a for sampling times of t = 0.05n and t = 0.1n, what conclusion can you draw from these three cases?Explanation / Answer
clc;
close all;
clear all;
T = 0.001; %t = nT = 0.001n => T = 0.001
t = 0:0.001:1;
xt = 10 + 3*sin(20*pi*t + (pi/3)) + 5*cos(40*pi*t);
n = t./0.001;
xn = 10 + 3*sin(20*pi*0.001*n + (pi/3)) + 5*cos(40*pi*0.001*n);
figure
subplot(2,1,1);
plot(t,xt);
subplot(2,1,2);
stem(n,xn);
for l = 1:100000
t = (l-1)*T/100;
h=sinc((t-n.*T)./T);
xr(l) = xn*h.';
end
figure
plot(xr);
T = 0.05; %t = nT = 0.001n => T = 0.001
t = 0:0.001:1;
xt = 10 + 3*sin(20*pi*t + (pi/3)) + 5*cos(40*pi*t);
n = t./0.001;
xn = 10 + 3*sin(20*pi*0.001*n + (pi/3)) + 5*cos(40*pi*0.001*n);
figure
subplot(2,1,1);
plot(t,xt);
subplot(2,1,2);
stem(n,xn);
for l = 1:100000
t = (l-1)*T/100;
h=sinc((t-n.*T)./T);
xr(l) = xn*h.';
end
figure
plot(xr);
T = 0.1; %t = nT = 0.001n => T = 0.001
t = 0:0.001:1;
xt = 10 + 3*sin(20*pi*t + (pi/3)) + 5*cos(40*pi*t);
n = t./0.001;
xn = 10 + 3*sin(20*pi*0.001*n + (pi/3)) + 5*cos(40*pi*0.001*n);
figure
subplot(2,1,1);
plot(t,xt);
subplot(2,1,2);
stem(n,xn);
for l = 1:100000
t = (l-1)*T/100;
h=sinc((t-n.*T)./T);
xr(l) = xn*h.';
end
figure
plot(xr);
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.