INVESTIGATION OF THE EFFECTS OF VARIOUS DESIGN AND OPERATING PARAMETERS ON THERM
ID: 2088865 • Letter: I
Question
INVESTIGATION OF THE EFFECTS OF VARIOUS DESIGN AND OPERATING PARAMETERS ON THERMAL EFFICIENCY AND BACK WORK RATIO OF A GAS TURBINE Formulate and write a computer code to simulate the effects of pressure ratio, minimum/maximum temperature ratio, compressor efficiency, turbine efficiency, and regenerator effectiveness on cycle thermal efficiency, net -work output per unit mass, and back work ratio of a regenerative gas turbine power plant Treat the working fluid as air entering the compressor at ambient condition. Assume constant specific heats for air at an average temperature (average of minimum and maximum temperatures) and use equations to relate thermodynamic properties (Do not use Air Table). Test your program using ambient condition of 100 kPa pressure and 300 K temperature Determine the net work output, the back work ratio, and the thermal efficiency for all combinations of the following parameters Pressure ratio: Maximum cycle temperature Compressor adiabatic efficiency Turbine adiabatic efficiency Regenerator effectiveness 5, 10, 15, 20 1600, 2200, 2600, 3000 K 80, 85, 100 percent 80, 85, 100 percent 80, 85, 100 percent Sow detail sample calculations for pressure ratio of 15, maximum temperature of 2600 K compressor, and turbine efficiency of 85%, and regenerator effectiveness of 85% Tabulate your results for the effect of each parameter. Also show the results graphically Plot cycle thermal efficiency (y-axis) versus pressure ratio (x-axis) using other parameter as variables, one parameter at a time. On each graph list the values of all parameters used Analyze and discuss your results and related design considerations Draw conclusions for the effect of each parameter as well as the combined parameters on Overall Cycle Efficiency. Discuss when you recommend using a regenerator in a gas turbine cycle. Specify your optimum design for this power plantExplanation / Answer
Answer :
code
clc
clear
K=1.4;
R=8.314;
cp=(R*K)/(K-1);
M=10;
T1=300;
T2=340;
T3=700;
T4=410;
S1=30;
S2=30;
S3=100;
S4=100;
P1=1;
P2=16;
P3=16;
P4=1;
V1=(R*T1)/P1;
V2=(R*T2)/P2;
V3=(R*T3)/P3;
V4=(R*T4)/P4;
deltaS1=(S2-S1)/M;
deltaS2=(S3-S2)/M;
deltaS3=(S4-S3)/M;
deltaS4=(S1-S4)/M;
deltaT1=(T2-T1)/M;
deltaT2=(T3-T2)/M;
deltaT3=(T4-T3)/M;
deltaT4=(T1-T4)/M;
deltaP1=(P2-P1)/M;
deltaP2=(P3-P2)/M;
deltaP3=(P4-P3)/M;
deltaP4=(P1-P4)/M;
deltaV1=(V2-V1)/M;
deltaV2=(V3-V2)/M;
deltaV3=(V4-V3)/M;
deltaV4=(V1-V4)/M;
plot(S1,T1,'*');
hold on;
plot(S2,T2,'*');
hold on;
plot(S3,T3,'*');
hold on;
plot(S4,T4,'*');
grid on
X1=[ S1 S1 ];
Y1=[ T1 T2 ];
line(X1,Y1)
X2=[ S3 S4 ];
Y2=[ T3 T4 ];
line(X2,Y2)
X3=[ S2 S3 ];
Y3=[ T2 T3 ];
line(X3,Y3)
X4=[ S1 S4 ];
Y4=[ T1 T4 ];
line(X4,Y4)
xlabel('S (KJ/Kgk)')
ylabel('T (K)')
set(gca,'XLim',[(S1-10) (S2+100)],'YLim',[0 (T4+400)])
title('Regenerative Brayton Cycle')
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.