Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

USE A COMPUTER PROGRAM SUCH AS MATLAB OR PSPICE!!!!!!!!!!! USE A COMPUTER PROGRA

ID: 2248179 • Letter: U

Question

USE A COMPUTER PROGRAM SUCH AS MATLAB OR PSPICE!!!!!!!!!!!

USE A COMPUTER PROGRAM SUCH AS MATLAB OR PSPICE!!!!!!!!!!!

USE A COMPUTER PROGRAM SUCH AS MATLAB OR PSPICE!!!!!!!!!!!

USE A COMPUTER PROGRAM SUCH AS MATLAB OR PSPICE!!!!!!!!!!!

c. Design and simulate (perform both DC and AC malysis) a CC amplifier, based on the Fig. 2.3 configuration with the characteristics/specs given below: try to use resistor values available within your lab kit (or as close as possible). Compare your design with the simulation results (preferably in a table). PLEASE NOTE that the objective is NOT to design a circuit that matches exactly ALL the specifications given below, but rather to develop what you consider an "effective" design that will meet the specifications within a reasonable range; consider the voltage gain and a maximum output signal swing as your two most important design constraints/goals. = 150; VBE Vo55 Volts: RL-IKO; c In simulations use C-1 F. 0.7 Volts i. ii. iii. 3.4 Volts; 1 0.8 mA; A-0.95 OUT Figure 2.3

Explanation / Answer

%elec05e06.m
clear, clf
fs1=6e3; fp1=10e3; fp2=12e3; fs2=15e3; Rp=3; As=25; fp=sqrt(fp1*fp2);
ws1=2*pi*fs1; wp1=2*pi*fp1; wp2=2*pi*fp2; ws2=2*pi*fs2;
format short e
[N,wpc]= cheb1ord([wp1 wp2],[ws1 ws2],Rp,As,'s');
[B,A]= cheby1(N,Rp,wpc,'s');
f=logspace(-1,1,600)*fp; Gw=freqs(B,A,2*pi*f); % Frequency response
subplot(221), semilogx(f,20*log10(abs(Gw))), hold on
plot([f(1) fp2],[-Rp -Rp],'k:', [f(1) fs2],[-As -As],'k:')
plot([fs1 fs1],[-50 -As],'k:', [fp1 fp1],[-50 -Rp],'k:', [fp2 fp2],[-50 -Rp],'k:', [fs2 fs2],[-50 -As],'k:')
axis([f([1 end]) -50 5])
[SOS,K]= tf2sos(B,A);
Ns=size(SOS,1); % Number of sections
Gm=K^(1/Ns), BBc=SOS(:,1:3), AAc=SOS(:,4:6)
KC=2;
for n=1:Ns
   B2=Gm; A2 = AAc(n,2); A3 = AAc(n,3); C3=1e-8; C4=1e-8;
   subplot(222+n), BPF_MFBa_design(B2,A2,A3,C3,C4,KC);
   %Gs, B, A
end
set(gcf,'Color','white')
% This yields
%R1= 11241, R2=     40, R5= 46095, C3=1.000e-008, C4=1.000e-008
%R1= 11241, R2=     46, R5= 53119, C3=1.000e-008, C4=1.000e-008

clc;

clear all;close all;

options = odeset('RelTol',1e-9);

Pp= 400e-3;

Ps = 10e-6;

L= 7;

% First forward Run......

[xf1,yf1] = ode45(@gain_ode_for,[0 L],[Pp Ps zeros(1,301)]);

figure(1)

plot(xf1,yf1(:,1));

title('Pump Power in first run');

figure(2)

plot(xf1,yf1(:,2));

title('signal Power in first run');

db = 10*log10(yf1(:,2)/10e-6);

figure(4)

plot(xf1,db);

title('gain in first run');

printSol(xf1,yf1,9);

m=size(yf1,1);

d = 1520e-9:0.2e-9:1580e-9;

figure(5)

plot(d,yf1(m,3:303))

title('Forward ASE in first run');

% First backward Run......

[xb1,yb1] = ode45(@gain_ode,[L 0],[yf1(m,:) zeros(1,301)]);

figure(6)

plot(xb1,yb1(:,1));

title('Pump power in first backward run');

figure(7)

plot(xb1,yb1(:,2));

title('Signal power in first backward run');

figure(3)

plot(xb1,yb1(:,3));

db = 10*log10(yb1(:,2)/10e-6);

figure(8)

plot(xb1,db);

title('Gain in first backward run');

printSol(xb1,yb1,20);

[m1 n1]=size(yb1);

figure(9)

plot(d,yb1(m1,3:303))

title('Forward ase in first backward run');

figure(10)

plot(d,abs(yb1(m1,304:604)))

title('Bacward ASE in first backward run');

% Second Forward run

[xf2,yf2] = ode45(@gain_ode,[0 L],[Pp Ps zeros(1,301) (yb1(m1,304:604))]);

figure(11)

plot(xf2,yf2(:,1));

title('Pump power in second forward run');

figure(12)

plot(xf2,yf2(:,2));

title('Signal power in second forward run');

%figure(3)

% plot(xf1,yf1(:,3));

db = 10*log10(yf2(:,2)/10e-6);

figure(14)

plot(xf2,db);

title('Gain in second forward run');

printSol(xf2,yf2,9);

m3=size(yf2,1);

figure(19)

plot(d,yf2(m3,3:303))

title('Forward ASE in second forward run');

figure(20)

plot(d,yf2(m3,304:604))

title('BAckward ase in second forward run');