Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Definition of Variables: I is the PV array output current in amps V is the PV ar

ID: 2262276 • Letter: D

Question

Definition of Variables: I is the PV array output current in amps V is the PV array output voltage in volts ns is the number of series cells np is the number of parallel groups of series cells q is the charge of an electron k is Boltzmann's constant A is the p-n junction ideality factor T is the cell temperature in K Tr is the cell reference temperature Im is the reverse saturation current at the cell reference temperature Tr E is the band-gap energy of the semiconductor used in the cell Iser is the cell short-circuit current at reference temperature and radiation ki is the short circuit current temperature coefficient S is the solar radiation in mW/ cm2 The cell reverse saturation current Irs varies with the temperature The photo-current Iph varies with the solar irradiation and the temperature. Data: For this example a BP-350 50 Watt photovoltaic module is used http://www.bp.com/liveassets/bp internet/solar/bpsolar usa/STAGING/local assets/do 350u 04 4022 The photovoltaic panel data sheet gives the short circuit current and number of series and parallel cells as well as a set if I-V curves for varying temperature. For the purpose of simulation studies the following model data is used np 2; ns 36 q 1.602e-19; k-1.38e-23; Iscr 3.17; A 1.5; Irr-19.9693; Tr-893; Eg-825; ki-0.002; R-10; l. For V= 0 : .1 : 30 ; T-25 degree C and S-60 80 1001 mW/cm, plot the module I-V and P-V characteristics. 2. For V= 0 : .1: 30 ; T= [25 50 1001 degree C and S-80 mW/cm, plot the module I-V and P-V characteristics

Explanation / Answer

SOLUTION:

1)

clc;

clear all;

close all;

np=2;ns=36;q=1.602e-19;k=1.38e-23;iscr=3.17;

a=1.5;irr=19.9693;tr=893;eg=0.825;ki=0.002;

v=0:0.1:30;temp=298;

for(s=60)

irs1=irr*(temp/tr)^3*exp(q*eg/(k*a)*(1/tr-1/temp));

id1=irs1*(exp(q*v/(k*temp*a*ns))-1);

iph1=(iscr+ki*(temp-tr))*s/100;

i1=np*(iph1-id1);

p1=i1.*v;

pmaxpoint=max(p1);

figure

subplot(2,1,1)

plot(v,i1)

axis([0 22 0 4.5])

title('bp350 I-V curve')

xlabel('voltage')

ylabel('current')

% power plot

subplot(2,1,2)

plot(v,p1)

axis([0 22 0 80])

title('bp350 power voltage curve')

xlabel('voltage')

ylabel('power')

legend('s=60')

end

for(s=80)

irs2=irr*(temp/tr)^3*exp(q*eg/(k*a)*(1/tr-1/temp));

id2=irs2*(exp(q*v/(k*temp*a*ns))-1);

iph2=(iscr+ki*(temp-tr))*s/100;

i2=np*(iph2-id2);

p2=i2.*v

pmaxpoint=max(p2);

figure

subplot(2,1,1)

plot(v,i2)

axis([0 22 0 4.5])

title('bp350 I-V curve')

xlabel('voltage')

ylabel('current')

% power plot

subplot(2,1,2)

plot(v,p2)

axis([0 22 0 80])

title('bp350 power voltage curve')

xlabel('voltage')

ylabel('power')

legend('s=80')

end

for(s=100)

irs3=irr*(temp/tr)^3*exp(q*eg/(k*a)*(1/tr-1/temp));

id3=irs3*(exp(q*v/(k*temp*a*ns))-1);

iph3=(iscr+ki*(temp-tr))*s/100;

i3=np*(iph3-id3);

p3=i3.*v

pmaxpoint=max(p3);

figure

subplot(2,1,1)

plot(v,i3)

axis([0 22 0 4.5])

title('bp350 I-V curve')

xlabel('voltage')

ylabel('current')

% power plot

subplot(2,1,2)

plot(v,p3)

axis([0 22 0 80])

title('bp350 power voltage curve')

xlabel('voltage')

ylabel('power')

legend('s=60')

end

2 )

clc;

clear all;

close all;

np=2;ns=36;q=1.602e-19;k=1.38e-23;iscr=3.17;

a=1.5;irr=19.9693;tr=893;eg=0.825;ki=0.002;

v=0:0.1:30;temp=298;s=80;

for(temp=298)

irs1=irr*(temp/tr)^3*exp(q*eg/(k*a)*(1/tr-1/temp));

id1=irs1*(exp(q*v/(k*temp*a*ns))-1);

iph1=(iscr+ki*(temp-tr))*s/100;

i1=np*(iph1-id1);

p1=i1.*v;

pmaxpoint=max(p1);

figure

subplot(2,1,1)

plot(v,i1)

axis([0 22 0 4.5])

title('bp350 I-V curve')

xlabel('voltage')

ylabel('current')

% power plot

subplot(2,1,2)

plot(v,p1)

axis([0 22 0 80])

title('bp350 power voltage curve')

xlabel('voltage')

ylabel('power')

legend('temp=25')

end

for(temp=323)

irs2=irr*(temp/tr)^3*exp(q*eg/(k*a)*(1/tr-1/temp));

id2=irs2*(exp(q*v/(k*temp*a*ns))-1);

iph2=(iscr+ki*(temp-tr))*s/100;

i2=np*(iph2-id2);

p2=i2.*v

pmaxpoint=max(p2);

figure

subplot(2,1,1)

plot(v,i2)

axis([0 22 0 4.5])

title('bp350 I-V curve')

xlabel('voltage')

ylabel('current')

% power plot

subplot(2,1,2)

plot(v,p2)

axis([0 22 0 80])

title('bp350 power voltage curve')

xlabel('voltage')

ylabel('power')

legend('temp=50')

end

for(tepm=373)

irs3=irr*(temp/tr)^3*exp(q*eg/(k*a)*(1/tr-1/temp));

id3=irs3*(exp(q*v/(k*temp*a*ns))-1);

iph3=(iscr+ki*(temp-tr))*s/100;

i3=np*(iph3-id3);

p3=i3.*v

pmaxpoint=max(p3);

figure

subplot(2,1,1)

plot(v,i3)

axis([0 22 0 4.5])

title('bp350 I-V curve')

xlabel('voltage')

ylabel('current')

% power plot

subplot(2,1,2)

plot(v,p3)

axis([0 22 0 80])

title('bp350 power voltage curve')

xlabel('voltage')

ylabel('power')

legend('temp=100')

end

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote