Determine if the plane (112) is perpendicular to the following directions:[100],
ID: 2308369 • Letter: D
Question
Explanation / Answer
Two Miller planes with miller indices : [h_{1},k_{1},l_{1}] and [h_{2},k_{2},l_{2}] are said to be perpendicular if the angle (phi) between the two planes is 90^{degree} i.e. cos{phi}=0. The angle between any two planes is obtained using the relation - cos{phi}=rac{h_{1}h_{2}+k_{1}k_{2}+l_{1}l_{2}}{sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}} sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}} 1. We are given - [h_{1},k_{1},l_{1}]=[1 1 2]Rightarrow h_{1}=1,k_{1}=1,l_{1}=2\\ herefore hspace{0.2cm} sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}}=sqrt{6} If [h_{2},k_{2},l_{2}]=[1 0 0]Rightarrow h_{2}=1,k_{2}=0,l_{2}=0\\ herefore hspace{0.2cm} sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}=1 therefore, cos{phi}=rac{h_{1}h_{2}+k_{1}k_{2}+l_{1}l_{2}}{sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}} sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}} =rac{1+0+0}{sqrt{6}}=rac{1}{sqrt{6}} This implies, Miller plane [1 1 2] is not perpendicular to [1 0 0]. If [h_{2},k_{2},l_{2}]=[0 0 1]Rightarrow h_{2}=0,k_{2}=0,l_{2}=1\\ herefore hspace{0.2cm} sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}=1 therefore, cos{phi}=rac{h_{1}h_{2}+k_{1}k_{2}+l_{1}l_{2}}{sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}} sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}} =rac{0+0+2}{sqrt{6}}=rac{2}{sqrt{6}} This implies, Miller plane [1 1 2] is not perpendicular to [0 0 1]. If [h_{2},k_{2},l_{2}]=[ar{2} 1 1]Rightarrow h_{2}=-2,k_{2}=1,l_{2}=1\\ herefore hspace{0.2cm} sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}=sqrt{6} therefore, cos{phi}=rac{h_{1}h_{2}+k_{1}k_{2}+l_{1}l_{2}}{sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}} sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}} =rac{-2+1+2}{sqrt{6}sqrt{6}}= rac{1}{6} This implies, Miller plane [1 1 2] is not perpendicular to [ar{2}, extbf{1,1}]. If [h_{2},k_{2},l_{2}]=[ar{1} ar{1} 0]Rightarrow h_{2}=-1,k_{2}=-1,l_{2}=0\\ herefore hspace{0.2cm} sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}=2 therefore, cos{phi}=rac{h_{1}h_{2}+k_{1}k_{2}+l_{1}l_{2}}{sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}} sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}} =rac{-1-1+0}{sqrt{6}sqrt{2}}=-rac{2}{sqrt{6}sqrt{2}} This implies, Miller plane [1 1 2] is not perpendicular to [ar{1},ar{1}, extbf{0}]. 2. The interplanar distance between two planes with indices : [h_{1},k_{1},l_{1}] and [h_{2},k_{2},l_{2}] for a cubic lattice with lattice constant (a) is written as - d_{2}-d_{1}=Delta d=aleft [ rac{1}{sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}}- rac{1}{sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}}} ight ] Thus, if [h_{1},k_{1},l_{1}]=[1 2 3] and [h_{2},k_{2},l_{2}]=[3 2 1] such that sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}}=sqrt{1+4+9}=sqrt{14} and sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}=sqrt{9+4+1}=sqrt{14} Thus, interplanar distance between these two planes are - Delta d=aleft [ rac{1}{sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}}- rac{1}{sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}}} ight ] =aleft [ rac{1}{sqrt{14}}- rac{1}{sqrt{14}} ight ] =0 and, the angle at which these two planes cross each other is - cos{phi}=rac{h_{1}h_{2}+k_{1}k_{2}+l_{1}l_{2}}{sqrt{h_{1}^{2}+k_{1}^{2}+l_{1}^{2}} sqrt{h_{2}^{2}+k_{2}^{2}+l_{2}^{2}}} =rac{3+4+3}{sqrt{14}sqrt{14}} =rac{10}{14}=rac{5}{7} This gives us - phi=cos^{-1}{rac{5}{7}}=44.415^{degree}
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.