Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The Blazingame Corporation is considering a three-year project that has an initi

ID: 2683061 • Letter: T

Question

The Blazingame Corporation is considering a three-year project that has an initial cash outflow (C0) of $175,000 and three cash inflows that are defined by the independent probability distributions shown below. All dollar figures are in thousands. Blazingame's cost of capital is 10%. C1 C2 C3 Probability $50 $40 $75 .25 $60 $80 $80 .50 $70 $120 $85 .25 a. Estimate the project's most likely NPV by using a point estimate of each cash flow. What is its probability? b. What are the best and worst possible NPVs? What are their probabilities? c. Choose a few outcomes at random, calculate their NPVs and the associated probabilities, and sketch the probability distribution of the project's NPV. [Hint: The project has 27 possible cash flow patterns (3?3?3) each of which is obtained by selecting one cash flow from each column and combining with the initial outflow. The probability of any pattern is the product of the probabilities of its three uncertain cash flows. For example, a particular pattern might be as follows. C0 C1 C2 C3 CI ($175) $50 $120 $80 Probability 1.0 .25 .25 .50 The probability of this pattern would be .25 ? .25 ? .50 = .03125.]

Explanation / Answer

Although the problem asks for only a few outcomes, we'll list them all and identify the best, worst, and most likely. First restate the matrix of outcomes by multiplying each Ci by PVF10,i and rounding to the nearest $1,000:

                        C1        C2        C3        Probability

                        $45    $33    $56     .25

                        $55    $66    $60      .50

                        $64    $99    $64      .25

Next enumerate the possible cash flows and calculate their probabilities.

($000)

            C0        C1        C2        C3        NPV                 Probability

            -175   45        33        56        -41                 .25×.25´.25 = .015625

                       Worst               60        -37                 .25´.25´.50 = .031250

                                                64        -33                 .25´.25´.25 = .015625

            -175   45        66        56        -8                   .25´.50´.25 = .031250

                                                60        -4                   .25´.50´.50 = .062500

                                                64          0                   .25´.50´.25 = .031250

            -175 45        99        56        25                    .25´.25´.25 = .015625

                                                60        29                   .25´.25´.50 = .031250

                                                64        33                   .25´.25´.25 = .015625

            -175   55        33        56        -31                 .50´.25´.25 = .031250

                                                60        -27                 .50´.25´.50 = .062500

                                                64        -23                 .50´.25´.25 = .031250

            -175   55        66        56          2                  .50´.50´.25 = .062500

            Most likely               60         6                  .50´.50´.50 = .125000

                                                64        10                  .50´.50´.25 = .062500

            -175   55        99        56        35                  .50´.25´.25 = .031250

                                                60        39                  .50´.25´.50 = .062500

                                              64        43                  .50´.25´.25 = .031250

            -175   64        33        56        -22                 .25´.25´.25 = .015625

                                                60        -18                 .25´.25´.50 = .031250

                                                64        -14                 .25´.25´.25 = .015625

            -175   64        66        56          11                 .25´.50´.25 = .031250

                                                60          15                 .25´.50´.50 = .062500

                                                64          19                 .25´.50´.25 = .031250

            -175   64        99        56          44                 .25´.25´.25 = .015625

                                                60          48                 .25´.25´.50 = .031250

                        Best                 64          52                 .25´.25´.25 = .015625

                                                                                                       1.000000

     Finally, sorting the outcomes and grouping within NPV ranges yields the following probability distribution.

       NPV Range ($000)           Probability

          NPV < -$40               .015625

      -$40 < NPV < -$30           .078125

      -$30 < NPV < -$20           .109375

      -$20 < NPV < -$10           .046875

      -$10 < NPV <   $00           .125000

      -$00 < NPV <   $10           .250000

        $10 < NPV <   $20           .125000

        $20 < NPV <   $30           .046875

        $30 < NPV <   $40           .109375

        $40 < NPV <   $50           .078125

            NPV > $50                   .015625

                                               1.000000

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote