Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Consider a 11.00 percent coupon bond with eight years to maturity and a current

ID: 2709041 • Letter: C

Question

Consider a 11.00 percent coupon bond with eight years to maturity and a current price of $981.50. Suppose the yield on the bond suddenly increases by 2 percent.

         

Use duration to estimate the new price of the bond. (Round your answer to 2 decimal places. Omit the "$" sign in your response.)

         

            

Calculate the new bond price. (Round your answer to 2 decimal places. Omit the "$" sign in your response.)

          

Consider a 11.00 percent coupon bond with eight years to maturity and a current price of $981.50. Suppose the yield on the bond suddenly increases by 2 percent.

Explanation / Answer

Approximate Yield-to-Maturity Percentage

=

Annual Interest Payment + (Par Value - Bond Price)/Number of Years until Maturity

(Par Value + Bond Price)/2

Current price= 981.50

Years to maturity =8

Par value =1000

Coupon = 110

YTM = [110+ (1000-981.50)/8]/(1000+981.50)/2

= 112.31/990.75=11.33%

So current YTM is 11.33%

Revised YTM =13.33%

a.

Year 1

Year 2

Year 3

Year 4

Year 5

Year 6

Year 7

Year 8

Interest

      110.00

110.00

   110.00

   110.00

110.00

110.00

   110.00

      110.00

Maturity value

1,000.00

Total Cash flow

      110.00

110.00

   110.00

   110.00

110.00

110.00

   110.00

1,110.00

Discount Factor @13.33%

        0.882

    0.779

      0.687

     0.606

     0.535

     0.472

     0.416

        0.367

PV of cash Flow

        97.06

    85.65

      75.57

     66.68

     58.84

     51.92

     45.81

      407.91

PV of Total cash Flow

      889.44

So revised Bond Price

$ 889.44

b.

Revised Bond price as per YTM formula ;

YTM=13.33%

Let the bond price be b

So, 0.1333= [110+(1000-b)/8]/(1000+b)/2

Or,0.1333(1000+b)= 2[110+(1000-b)/8]= 2[880+1000-b]/8=[880+1000-b]/4

Or 0.5332(1000+b)=880+1000-b

Or, 533.2 +0.5332b=1880-b

Or, 1.5332b=1346.8

Or b= 878.42

So revised bond price as per YTM formula = $878.42

Approximate Yield-to-Maturity Percentage

=

Annual Interest Payment + (Par Value - Bond Price)/Number of Years until Maturity

(Par Value + Bond Price)/2

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote