Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1.) Find the equation of the tangent plane to the surface z = e^(-1x/17) ln(3y)

ID: 2832814 • Letter: 1

Question

1.) Find the equation of the tangent plane to the surface z = e^(-1x/17) ln(3y)

at the point (-3, 2, 2.138)?


2.) Consider the ellipsoid 2x^2 + 5y^2 + z^2 = 26

a.) The implicit form of the tangent plane to this ellipsoid at (1, -2, -2) is?

b.) The parametric form of the line through this point that is perpendicular to that tangent plane is L(t) =?


3.) Suppose z = x^2 siny, x = 3s^2 + 2t^2 , y = 4st

a.) Find the numerical values of [(Dz)/(Ds)] and [(Dz)/(Dt)]  when (s , t) = (2, 1)

i.)[(Dz)/(Ds)] (2, 1).............................................?

ii)[(Dz)/(Dt)] (2, 1).......................................?


4.) Suppose z = x^2 sin y, x = 2s^2 - 4t^2 , y = 2st.

a.) Find the numerical values of [(Dz)/(Ds)] and [(Dz)/(Dt)] when (s, t) = (-2, -3)

i)[(Dz)/(Ds)] (-2, -3)...........................................?

ii)[(Dz)/(Dt)] (-2, -3).....................................?


5.) Use the chain rule to find [(Dz)/ (Dt) , where

z = x^2 y + xy^2 , x = -4 + t^4 , y = 2 - t^4

a.) End result (in terms of just t):

Explanation / Answer


1)

z = e^(-x/17) * ln(3y)


differentiate w.r.t x


zx = (-1/17) * e^(-x/17) * ln(3y)


zx(-3, 2) = (-1/17) * e^(3/17) * ln(6) = -0.12574


and

differentiate w.r.t y


zy = e^(-x/17) * 1/y


zy(-3, 2) = e^(3/17) * 1/2 = 0.5965


Tangent eq. is


z = 2.138 - 0.12574*(x + 3) + 0.5965*(y - 2)


=>


z = -0.12574x + 0.5965y + 0.56778



2)


2x^2 + 5y^2 + z^2 = 26


=>


z = sqrt[26 - 2x^2 - 5y^2]


differentiate w.r.t x


zx = -2x/[sqrt[26 - 2x^2 - 5y^2]]


zx(1, -2) = -2/[sqrt[26 - 2 - 20]] = -1



and


z = sqrt[26 - 2x^2 - 5y^2]


differentiate w.r.t y


zy = -5y/[sqrt[26 - 2x^2 - 5y^2]]


zy(1, -2) = 10/[sqrt[26 - 2 - 20]] = 5


tangent is


z = -2 - 1*(x- 1) + 5*(y + 2)


=>


z = -x + 5y + 9



3) z = x^2 siny, x = 3s^2 + 2t^2 , y = 4st


z = x^2 siny


dz/dx = 2x siny


and


dz/dy = x^2 cosy


x = 3s^2 + 2t^2


dx/ds = 6s


and


dx/dt = 4t


y = 4st


dy/ds = 4t


and


dy/dt = 4s


now

i)


dz/ds = dz/dx * dx/ds + dz/dy * dy/ds


        = 2xsiny * 6s + x^2 cosy * 4t


       = 2*[3s^2 + 2t^2] * sin(4st) * 6s + (3s^2 + 2t^2)^2 * cos(4st) * 4t


now put s = 2, t = 1


[Dz/Ds](2, 1) = 2*[12 + 2] * sin(8) * 12 + (12 + 2)^2 * cos(8) * 4 = 218.352


ii)


dz/dt = dz/dx * dx/dt + dz/dy * dy/dt


       = 2xsiny * 4t + x^2 cosy * 4s


       = 2*[3s^2 + 2t^2] * sin(4st) * 4t + (3s^2 + 2t^2)^2 * cos(4st) * 4s



now put s = 2, t = 1


[Dz/Dt](2, 1) = 2*[12 + 2] * sin(8) * 4 + (12 + 2)^2 * cos(8) * 8


                   = -117.336



4) z = x^2 sin y, x = 2s^2 - 4t^2 , y = 2st



z = x^2 siny


dz/dx = 2x siny


and


dz/dy = x^2 cosy


x = 2s^2 - 4t^2


dx/ds = 4s


and


dx/dt = -8t


y = 2st


dy/ds = 2t


and


dy/dt = 2s


now

i)


dz/ds = dz/dx * dx/ds + dz/dy * dy/ds


        = 2xsiny * 4s + x^2 cosy * 2t


       = 2*[2s^2 - 4t^2] * sin(2st) * 4s + (2s^2 - 4t^2)^2 * cos(2st) * 2t


now put s = -2, t = -3


[Dz/Ds](-2, -3) = 2*[8 - 4*9] * sin(12) * -8 + (8 - 4*9)^2 * cos(12) * -6


                    = -4209.875



ii)


dz/dt = dz/dx * dx/dt + dz/dy * dy/dt


       = 2xsiny * -8t + x^2 cosy * 2s


       = 2*[2s^2 - 4t^2] * sin(2st) * -8t + (2s^2 - 4t^2)^2 * cos(2st) * 2s



now put s = -2, t = -3


[Dz/Dt](-2, -3) = 2*[8 - 4*9] * sin(12) * 24 + (8 - 4*9)^2 * cos(12) * -4


                    = -1925.172



5)


z = x^2 y + xy^2 , x = -4 + t^4 , y = 2 - t^4



z = x^2 y + xy^2


dz/dx = 2xy + y^2


and


dz/dy = x^2 + 2xy



x = -4 + t^4


dx/dt = 4t^3


y = -4 + t^4


dy/dt = -4t^3


So,


Dz/Dt = dz/dx * dx/dt + dz/dy * dy/dt


         = (2xy + y^2) * 4t^3 + (x^2 + 2xy) * (-4t^3)


       = (2*(-4 + t^4 )(-4 + t^4) + (


1)

z = e^(-x/17) * ln(3y)


differentiate w.r.t x


zx = (-1/17) * e^(-x/17) * ln(3y)


zx(-3, 2) = (-1/17) * e^(3/17) * ln(6) = -0.12574


and

differentiate w.r.t y


zy = e^(-x/17) * 1/y


zy(-3, 2) = e^(3/17) * 1/2 = 0.5965


Tangent eq. is


z = 2.138 - 0.12574*(x + 3) + 0.5965*(y - 2)


=>


z = -0.12574x + 0.5965y + 0.56778



2)


2x^2 + 5y^2 + z^2 = 26


=>


z = sqrt[26 - 2x^2 - 5y^2]


differentiate w.r.t x


zx = -2x/[sqrt[26 - 2x^2 - 5y^2]]


zx(1, -2) = -2/[sqrt[26 - 2 - 20]] = -1



and


z = sqrt[26 - 2x^2 - 5y^2]


differentiate w.r.t y


zy = -5y/[sqrt[26 - 2x^2 - 5y^2]]


zy(1, -2) = 10/[sqrt[26 - 2 - 20]] = 5


tangent is


z = -2 - 1*(x- 1) + 5*(y + 2)


=>


z = -x + 5y + 9



3) z = x^2 siny, x = 3s^2 + 2t^2 , y = 4st


z = x^2 siny


dz/dx = 2x siny


and


dz/dy = x^2 cosy


x = 3s^2 + 2t^2


dx/ds = 6s


and


dx/dt = 4t


y = 4st


dy/ds = 4t


and


dy/dt = 4s


now

i)


dz/ds = dz/dx * dx/ds + dz/dy * dy/ds


        = 2xsiny * 6s + x^2 cosy * 4t


       = 2*[3s^2 + 2t^2] * sin(4st) * 6s + (3s^2 + 2t^2)^2 * cos(4st) * 4t


now put s = 2, t = 1


[Dz/Ds](2, 1) = 2*[12 + 2] * sin(8) * 12 + (12 + 2)^2 * cos(8) * 4 = 218.352


ii)


dz/dt = dz/dx * dx/dt + dz/dy * dy/dt


       = 2xsiny * 4t + x^2 cosy * 4s


       = 2*[3s^2 + 2t^2] * sin(4st) * 4t + (3s^2 + 2t^2)^2 * cos(4st) * 4s



now put s = 2, t = 1


[Dz/Dt](2, 1) = 2*[12 + 2] * sin(8) * 4 + (12 + 2)^2 * cos(8) * 8


                   = -117.336



4) z = x^2 sin y, x = 2s^2 - 4t^2 , y = 2st



z = x^2 siny


dz/dx = 2x siny


and


dz/dy = x^2 cosy


x = 2s^2 - 4t^2


dx/ds = 4s


and


dx/dt = -8t


y = 2st


dy/ds = 2t


and


dy/dt = 2s


now

i)


dz/ds = dz/dx * dx/ds + dz/dy * dy/ds


        = 2xsiny * 4s + x^2 cosy * 2t


       = 2*[2s^2 - 4t^2] * sin(2st) * 4s + (2s^2 - 4t^2)^2 * cos(2st) * 2t


now put s = -2, t = -3


[Dz/Ds](-2, -3) = 2*[8 - 4*9] * sin(12) * -8 + (8 - 4*9)^2 * cos(12) * -6


                    = -4209.875



ii)


dz/dt = dz/dx * dx/dt + dz/dy * dy/dt


       = 2xsiny * -8t + x^2 cosy * 2s


       = 2*[2s^2 - 4t^2] * sin(2st) * -8t + (2s^2 - 4t^2)^2 * cos(2st) * 2s



now put s = -2, t = -3


[Dz/Dt](-2, -3) = 2*[8 - 4*9] * sin(12) * 24 + (8 - 4*9)^2 * cos(12) * -4


                    = -1925.172



5)


z = x^2 y + xy^2 , x = -4 + t^4 , y = 2 - t^4



z = x^2 y + xy^2


dz/dx = 2xy + y^2


and


dz/dy = x^2 + 2xy



x = -4 + t^4


dx/dt = 4t^3


y = 2 - t^4


dy/dt = -4t^3


So,


Dz/Dt = dz/dx * dx/dt + dz/dy * dy/dt


         = (2xy + y^2) * 4t^3 + (x^2 + 2xy) * (-4t^3)


       = (2*(-4 + t^4 )(2 - t^4) + (2 - t^4 )^2) * 4t^3 + ((-4 + t^4)^2 + 2*(-4 + t^4)*(2 - t^4)) * (-4t^3)


simplify it