Q1) ----------------------------------------------------------------------------
ID: 2840958 • Letter: Q
Question
Q1)
----------------------------------------------------------------------------------------------------------
Q2)
----------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------
Explanation / Answer
Q1)
let radius be r, and length of rectangle be L
peremeter = pi*r + 2L + 2r = P,
so L = (P - pi*r - 2r)/2
area = pi*r^2/2 + 2r*L
substituting L, we get
area = pi*r^2/2 + 2r((P - pi*r - 2r)/2)
so area = pi*r^2/2 + (P*r - pi*r^2 - 2r^2)
area will be maximum or minimum at r, where d(area)/dr = 0
differentiate area with r and equate it with 0
after differentiating area we get
2pi*r/2 + P - 2pi*r-4r
equate this with 0
we get
P - pi*r -4r = 0
so r = P/(pi+4)
double differentiating area gives negative value, so area is maximum at r = P/(pi+4)
radius of semi circle = P/(pi+4)
Q2) Let length be L and bredth be B
so fensing peremeter = L+B+L-20 = 2L+B-20 = 1000 feet
area = L*B
area is maximum when sides are equal,
so L = B
so 2L+L-20 = 1000
so L = 340 feet
so dimensions of field are 340 feet x 340 feet
Q3) Let number of chairs be c
if c is less than or equal to 300 then revenue = 90c
so maximum = when c=300 , so maximum = 90*300 = $27000
minimum = 0
if c is > 300 then revenue = 89.75c
so maximum = 89.75*400 = $35900
minimum = 0
so maximum revenue = $35900
minimum = $0
Q4)S = 42 - D/3
flow = vehicles/hr
so flow = S*D
so flow = D(42 - D/3) = (126D - D^2)/3
so for flow to be maximum
differentiate and equate to zero
so d(flow)/dD = (126 -2D)/3 = 0
so D = 63
double differentiating gives negative value, so flow is maximum at D = 63
density for maximum flow = 63 vehicles per mile
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.