Evaluate the limit using L\'Hospital\'s rule if necessary Evaluate the limit usi
ID: 2841671 • Letter: E
Question
Evaluate the limit using L'Hospital's rule if necessary
Evaluate the limit using L'Hospital's rule if necessary.
Answer:
Explanation / Answer
1)
lim = 4(cosx - 1)/(sin(x) + x.cos(x)) = 4sin(x)/(2cos(x)- x.sin(x)) = 4*0/2 = 0
2)
lim = e^(12/4) = e^3
3)
lim = 4sin(4x)/5sin(5x) = 16cos(4x)/25cos(5x) = 16/25 = 0.64
4)
lim = 6-5-0 = 1
5)
y = x^(3sinx) -> ln(y) = 3sin(x).ln(x) = 3ln(x)/csc(x)
lim ln(y) = (3/x)/(-cos(x)/sin^2(x)) = 0
-> lim y = lim x^(3sinx) = e^0 = 1
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.