Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Evaluate the limit using L\'Hospital\'s rule if necessary Evaluate the limit usi

ID: 2841671 • Letter: E

Question





Evaluate the limit using L'Hospital's rule if necessary












Evaluate the limit using L'Hospital's rule if necessary.


Answer:






Find the limit: lim x rightarrow 0 (4/x - 4/sin(x)) = Evaluate the limit using L'Hospital's rule if necessary lim x rightarrow (1 + 12/x)1/4 Compute the following limits using l'Hopital's rule if appropriate. Use INF to denote infinity and -INF to denote - infinity limx rightarrow 0 1-cos(4x)/1-cos(5x) lim x rightarrow 1 6x - 5x - 10(x2 - 1) Evaluate the limit using L'Hospital's rule if necessary. lim x rightarrow 0+ x3sin(X)

Explanation / Answer

1)

lim = 4(cosx - 1)/(sin(x) + x.cos(x)) = 4sin(x)/(2cos(x)- x.sin(x)) = 4*0/2 = 0


2)

lim = e^(12/4) = e^3


3)

lim = 4sin(4x)/5sin(5x) = 16cos(4x)/25cos(5x) = 16/25 = 0.64


4)

lim = 6-5-0 = 1


5)

y = x^(3sinx) -> ln(y) = 3sin(x).ln(x) = 3ln(x)/csc(x)


lim ln(y) = (3/x)/(-cos(x)/sin^2(x)) = 0


-> lim y = lim x^(3sinx) = e^0 = 1

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote