pt) Suppose r ? ( t ) = cos ( ? t ) i + sin ( ? t ) j + 2 t k represents the pos
ID: 2845423 • Letter: P
Question
pt) Suppose r ? (t)=cos(?t)i+sin(?t)j+2tk represents the position of a particle on a helix, where z is the height of the particle.
(a) What is t when the particle has height 8 ?
t=
(b) What is the velocity of the particle when its height is 8 ?
v ? =
(c) When the particle has height 8 , it leaves the helix and moves along the tangent line at the constant velocity found in part (b). Find a vector parametric equation for the position of the particle in terms of the original parameter t as it moves along this tangent line. In other words, the t value from part (a) should give you the same point on the line and the curve.
Explanation / Answer
(a) The variable z represents the height.
So, we need 4t = 8 ==> t = 2.
(b) v(t) = r'(t) = <-? sin(?t), ? cos(?t), 4>.
==> v(2) = <0, ?,2>.
(c) Since r(2) = <1, 0, 4>, and r'(2) = <0, -?,2>, the tangent line has equation
L(t) = <1, 0, 4> + t<0, -?, 2> = <1, -?t, 2t + 4>.
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.