For each of the following function, state whether they are onto or not. (You mus
ID: 2852669 • Letter: F
Question
For each of the following function, state whether they are onto or not. (You must enter T or F --True and False will not work.) f: R - {0} right arrow R, f(x) = 1/x^3 f: [0, infinity) right arrow (0, infinity), f(x) = x^3 f: [3, infinity) right arrow R, f(x) = 1/x^3 f: [3, infinity) right arrow R, f(x) = x^2 f: (-infinity,0) right arrow R, f(x) = x^3 for each of the following function, state whether they are onto or not.(You must enter T or F -- True and false will not work.) f: (-1,1) rightarrow (-infinity, -1/1], f(x) = 1/x^2-1 f: [0,1) rightarrow (-infinity, -1/1], f(x) = 1/x^2-1 f: R - {1, -1} rightarrow (-infinity, -1/1], U (0, infinity), f(x) = 1/x^2-1 f: (-infinity, -1) rightarrow R, f(x) = 1/x^2-1 f: (-1,0) rightarrow (-infinity, -1/1], f(x) = 1/x^2-1 f: R - {1, -1} rightarrow R, f(x) = 1/x^2-1 f: (-infinity, -1) rightarrow (0, infinity) f(x) = 1/x^2-1 f: (1, infinity) rightarrow (0, infinity), f(x) = 1/x^2-1 f: (-1, 0) rightarrow R, f(x) = 1/x^2-1 f: (-1, 1) rightarrow R, f(x) = 1/x^2-1 f: [0, 1) rightarrow R, f(x) = 1/x^2-1 f: (1, infinity) rightarrow R, f(x) = 1/x^2-1Explanation / Answer
1. T
2. T
3. F
4. F
5. F
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.