Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

?Differential Equation Applications: A tank contains 30 gallons of a solution co

ID: 2853227 • Letter: #

Question

?Differential Equation Applications:

A tank contains 30 gallons of a solution composed of 80% water and 20% alcohol. A second solution containing half water and half alcohol is added to the tank at the rate of 6 gallons per minute. At the same time, the well-stirred solution is withdrawn at the same rate, as shown in the figure. Find the amount y of alcohol in the solution as a function of t by solving the differential equation dy/dt = -6(y/30) + 3. Find the amount of alcohol in the tank after 10 minutes.

Explanation / Answer

     a)    To   find   the amount y   of alcohal   in the solution as a

            function of t by solving the differential equation

   dy/dt = -6 (y/30) + 3

   dy/dt = (-y/5) + 3

               dy/dt + (y/5) = 3

     This is the linear differential equation of the form

           dy/dt = Py + Q

       and , Integrating factor (IF ) = e^[Integral Pdt ]

      Here , I F = e^[Integral dt /5 ]

                 I F = e^ [t / 5]

           Now, its Complete Solution will be

ye^(t/5) = Integral [ 3 e^ [t / 5] dt ]

           ye^(t/5) = 3 Integral [ e^ [t / 5] dt ]   

   ye^(t/5) = 15 [ e^ [t / 5] ]   + C

      y = 15 + C e^(-t/5)

b)   To find the Amount   of Alcohal   in the tank   after 10   minutes

           Initially, the tank contains 30 gallon (20% alcohol) = 60 gallon of alcohol,
           y(0) = 30
          Substituting   y = 30    and   t = 0

        y = 15 + C e^(-t/5)

           30 = 15 + Ce^(0/5)

              15 = C

             On Putting   the   value , we get

              y = 15 + 15 e^(-t/5)  


           Now,   to   find   the amount   of alcohal   in the tank after

         10 minutes

            y = 15 + 15 e^(-10/5)  

           y = 15 + 15 e^(-2)     

       y = 15 ( 1 + e^(-2) )

           y = 15 ( 1 + 1/7.389)

           y = 15 ( 1 + 0.1353)

            y = 17.0300 gallon

          Hence , Amount of   alcohal in the tank   after   10 minutes

         is 17. 0300 gallon

              

         

  

         

         

          

            

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote