1.) Find the x-coordinate of the absolute maximum for the function f(x)=(4+6ln(x
ID: 2857352 • Letter: 1
Question
1.) Find the x-coordinate of the absolute maximum for the function
f(x)=(4+6ln(x))/(x) ,x>0.
x-coordinate of absolute maximum =
2.) Find the x-coordinate of the absolute minimum for the function
f(x)=5xln(x)?9x, x>0.
x-coordinate of absolute minimum =
3.)
Find the absolute maximum and absolute minimum values of the function
f(x)=x^3-12x^2-27x+7
over each of the indicated intervals.
(a) Interval = [?2,0].
(b) Interval = [1,10].
(c) Interval = [?2,10].
Explanation / Answer
1.) f'(x) = ((6/x)*x - (4+6ln(x))/x^2 = 0
So 6 - 4 - 6ln(x) = 0
6ln(x) = 2
ln(x) = 1/3
So x = e^(1/3)
2.) f'(x) = (5+5ln(x) - 9 = 0
5ln(x) = 4
ln(x) = 4/5
So x = e^(4/5)
3.) f'(x) = 3x^2 - 24x - 27 = 0
x^2 - 8x - 9 = 0
(x-9)(x+1) = 0
So x = -1 , 9
f''(x) = 6x - 24
f''(-1) = 6(-1) - 24 = -30 < 0
So At x = -1 , absolute maximum
(A1.) Absolute maximum = f(-1) = (-1)^3 - 12(1) - 27(-1) +7 = 21
(A2.) Absolute minimum = f(-2) = (-2)^3 - 12(-2)^2 - 27(-2) + 7 = 5
f''(9) = 6(9) - 24 = 30 > 0
So At x = 9 , absolute minimum
(B1.) Absolute maximum = f(1) = (1)^3 - 12(1) - 27(1) +7 = -31
(B2.) Absolute minimum = f(9) = (9)^3 - 12(9)^2 - 27(9) + 7 = -479
(C1.) Absolute maximum = f(-1) = (-1)^3 - 12(1) - 27(-1) +7 = 21
(C2.) Absolute minimum = f(9) = (9)^3 - 12(9)^2 - 27(9) + 7 = -479
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.