Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1. Find the general antiderivative. 4* cosx/sin^2x (dx) 2. Find the general anti

ID: 2863635 • Letter: 1

Question

1. Find the general antiderivative.


4* cosx/sin^2x (dx)

2. Find the general antiderivative.

(4x-2e^x)dx


3. Find the general antiderivative.


3/4x^2+4 dx

4. Find the function f(x)satisfying the given conditions.


f " (x)= 20x^3+2e^2x, f ' (0)= -3, f(0)=2

5. Determine the position function if the velocity function is v(t)=3e^-1-2 and the initial position is s(0)=0.



6. Write out all terms and compute the sums.

7

       E      (i^2+i)

       i=3

   

7. Use summation rules to compute the sum.

140

E       (n^2+2n-4)

n=1

8. Use summation rules to compute the sum.

20

E     (i-3) (i+3)

i=4

9. Compute sum of the form n (summation)i=1for the given values of .

f(x) =3x+5, x=0.4, 0.8, 1.2,1.6, 2.0, deltax=0.4; n=5

10. Compute sum of the form for the given values of .

11. Approximate the area under the curve on the given interval using n rectangles and the evaluation rules (a) left endpoint, (b) midpoint, and (c) right endpoint.


y= x^2+1 on [0, 2], n = 16

12. Approximate the area under the curve on the given interval using n rectangles and the evaluation rules (a) left endpoint, (b) midpoint, and (c) right endpoint.


y=e^-2x on [–1, 1], n = 16

13. Use Riemann sums (See Section 4.3) and a limit to compute the exact area under the curve.


y=x^2+3x on (a) [0, 1]; (b) [0, 2]; (c) [1, 3]

14. Use Riemann sums (See Section 4.3) and a limit to compute the exact area under the curve.


y=4x^2-x on (a) [0, 1]; (b) [–1, 1]; (c) [1, 3]

15. Construct a table of Riemann sums as in example 3.4 (See Section 4.3) of the text to show that sums with right-endpoint, midpoint, and left-endpoint evaluation all converge to the same value as .

                                                                         

F(x) =sin x [ 0, pi/2]

16. Evaluate the integral by computing the limit of Riemann sums.


2

-2 (x^2-1)dx

17. Write the given (total) area as an integral or sum of integrals.

      The area above the x-axis and below y=4x-x^2           

18. Use the given velocity function and initial position to estimate the final position s(b).

      v(t)= 30e^-1/4, s(0)=-1, b=4

19. Compute the average value of the function on the given interval.

      f(x)= x^2+2x, [0,1]

20. Use the Integral Mean Value Theorem (See Section 4.4) to estimate the value of the integral.

      1    3/x^3+2 (dx)

     -1

Explanation / Answer

1. Find the general antiderivative.


4* cosx/sin^2x (dx)

4(sinx)-2 cosx (dx)

=4(1/(-2+1))(sinx)-2+1+C

=-4(sinx)-1+C

=(-4/(sinx)) +C

2. Find the general antiderivative.

(4x-2e^x)dx

=4*(1/2)x2 -2ex +C

=2x2 -2ex +C

3. Find the general antiderivative.


(3/4)x^2+4 dx

=(3/4)(1/3)x3 +4x +C

=(1/4)x3 +4x +C

4. Find the function f(x)satisfying the given conditions.


f " (x)= 20x3+2e2x ,f ' (0)= -3, f(0)=2

f '(x)= 20x3+2e2x dx

f '(x)=20(1/4)x4+2(1/2)e2x+C

f '(x)=5x4+e2x+C

f '(0)=-3

5*04+e0+C=-3

0+1+C=-3

C=-4

f '(x)=5x4+e2x-4

f(x)= 5x4+e2x-4 dx

f(x)=5(1/5)x5+(1/2)e2x-4x +C

f(x)=x5+(1/2)e2x-4x +C

f(0)=2

0+(1/2)e0-0+C=0

(1/2)+C=0

C=-1/2

f(x)=x5+(1/2)e2x-4x -(1/2)