Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Locate the critical points of the following function. Then use the Second Deriva

ID: 2863855 • Letter: L

Question

Locate the critical points of the following function. Then use the Second Derivative Test to determine whether they correspond to local maxima, local minima, or neither. f(x) = 3x^2 e^-2x -1 What is(are) the critical point(s) of f? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The critical point(s) is(are) x =. (Use a comma to separate answers as needed.) B. There are no critical points for f. What is/are the local minimum/minima of f? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The local minimum/minima of f is/are at x = B. There is no local minimum of f. What is/are the local maximum/maxima of f? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The local maximum/maxima of f is/are at x =. B. There is no local maximum of f.

Explanation / Answer

given f(x)=3x2e-2x-1

differentiate with respect to x

f '(x)=6xe-2x +(3x2)(-2)e-2x-0

f '(x)=6xe-2x -6x2e-2x

for critical point f '(x) =0

6xe-2x -6x2e-2x=0

6x-6x2=0

6x(1-x)=0

x=0,x=1

critical points are x =0,1

f ''(x)=6e-2x+6x(-2)e-2x -(12xe-2x+6x2(-2)e-2x)

f ''(x)=6e-2x-12xe-2x -12xe-2x+12x2e-2x

f ''(x)=(6-24x+12x2)e-2x

f "(0)=6>0 so local minimum at x =0

f ''(1)=(6-24+12)e-2=-6/e2<0

so local maximum at x =1

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote