Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

This is the graph of function y = 1 / (3x - 2) Indicate the transition points an

ID: 2867397 • Letter: T

Question

This is the graph of function y = 1 / (3x - 2)

Indicate the transition points and asymptotes. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.)

(a) What is the local minima?

(b) What is the local maxima?

(c) What are the inflection points?

(d) What are the vertical asymptotes?

(e) What are the horizontal asymptotes?

This is the graph of function y = 1 / (3x - 2) Indicate the transition points and asymptotes. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) (a) What is the local minima? (b) What is the local maxima? (c) What are the inflection points? (d) What are the vertical asymptotes? (e) What are the horizontal asymptotes?

Explanation / Answer

y = 1 / (3x - 2)

Deriving :

y' = -3 / (3x - 2)^2

First we find critical points, so y' = 0

-3 / (3x - 2)^2 = 0

-3 = 0 ---> ABSURD

So, no critical points and therefore, no extrema

Local minima : DNE
Local maxima : DNE

-------------------------------------------------------------------

Inflection :

y' = -3 / (3x - 2)^2

Deriving again :

y'' = 18 / (3x - 2)^3

To find inflection, y'' = 0

18 / (3x - 2)^3 = 0

Crossmultiplying :
18 = 0 ---> ABSURD

So, no inflection points exist

-------------------------------------------------------------------

Vertical asymptotes :

Equate denominator to 0
3x - 2 = 0
3x = 2
x = 2/3 ---> VA

Horizontal asymptote :

Degree of numerator = ZERO
Degree of denominator = ONE

Deg of numerator LESS THAN deg of denominator

So, the horizontal asymptote is : y = 0

-----------------------------------------------------------------------------

Here are the answers :

Local minima : DNE
Local maxima : DNE
Inflection points : DNE
Vertical asymptotes : x = 2/3
Horizontal asymptote : y = 0

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote