Let D be the region bounded below by the xy-plane, above by the sphere x^2 + y^2
ID: 2878859 • Letter: L
Question
Let D be the region bounded below by the xy-plane, above by the sphere x^2 + y^2 + z^2 = 100, and on the sides by the cylinder x^2 + y^2 = 36. Set up the triple integral in cylindrical coordinates that gives the volume of D using the order of integration dr dz dtheta. Integral^2 pi_0 Integral^Squareroot 64_0 Integral^10_0 r dr dz dtheta + Integral^2 pi_0 Integral^6_Squareroot 64 Integral^Squareroot 100-z^2 r dr dz d theta Integral^2 pi_0 Integral^Squareroot 64_0 Integral^6_0 r dr dz dtheta + Integral^2 pi_0 Integral^10_Squareroot 64 Integral^Squareroot 100-z^2 r dr dz d theta Integral^2 pi_0 Integral^Squareroot 64_0 Integral^10_0 r dr dz dtheta + Integral^2 pi_0 Integral^6_Squareroot 64 Integral^Squareroot 36-z^2 r dr dz d theta Integral^2 pi_0 Integral^Squareroot 64_0 Integral^10_0 r dr dz dtheta + Integral^2 pi_0 Integral^6_Squareroot 64 Integral^Squareroot 36-z^2 r dr dz d thetaExplanation / Answer
above xy plane (z=0)
in cylindrical coordinates
x=rcos, y=rsin
x2+y2=r2
x2+y2+z2=100 ,x2+y2=36
=>r2+z2=102 ,r2=62
=>r2+z2=102 ,r=6
=>62+z2=102
=>z=64
0<=<=2,0<=r<=6 ,0<=z<=64
and
r2+z2=102
r=[100-z2]
0<=<=2,0<=r<=[100-z2] ,64<=z<=10
dv =r dr dz d
volume=[0 to 2] [0 to 64] [0 to 6] r dr dz d +[0 to 2] [64to 10] [0 to [100-z2]] r dr dz d
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.