Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Okay. I believe that I am doing the equation correctly,but I am uncertain how to

ID: 2913654 • Letter: O

Question

Okay. I believe that I am doing the equation correctly,but I am uncertain how to determine what perameters to use in orderto determine if an hypothesis is or is not rejected. Here isan example problem from my text. Can anyone tell me how todecide whether or not to reject the hypothesis? I couldreally use some help. info: n=19; mean= 96,700; = 37,500; = 0.05; >90,000 I ended up with z = 2.47 the 2 end tails are z=1.96 Please, please help! Okay. I believe that I am doing the equation correctly,but I am uncertain how to determine what perameters to use in orderto determine if an hypothesis is or is not rejected. Here isan example problem from my text. Can anyone tell me how todecide whether or not to reject the hypothesis? I couldreally use some help. info: n=19; mean= 96,700; = 37,500; = 0.05; >90,000 I ended up with z = 2.47 the 2 end tails are z=1.96 Please, please help!

Explanation / Answer

If I understand correctly, you have been given an alpha value of0.05. The alpha value is your parameter of whether or not toreject the hypothesis. If the value of z from the zdistribution table is larger than 0.05, you fail to reject the nullhypothesis, never accept the hypothesis. I learned that thehard way from my stat teacher. If the value is small, orsmaller than 0.05, you reject the null hypothesis. Since yougave information for both tails, I am assuming you are going a twotail z-test. This would mean that the added region outsidethose two z values, 1.96 and -1.96, is .049996. Must z tableswould only have to four significant digits or so, so it wouldreally read 0.0500. When the this and alpha are the same youfail to either reject or fail to reject. This is simplybecause the value is exactly alpha. Some teachers would sayto choose a side and argue it.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote