Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Question2 3+12=15Marks Part (a): Discuss what is meant by the concept of indepen

ID: 2918143 • Letter: Q

Question

Question2                                                                                                  3+12=15Marks

Part (a):

Discuss what is meant by the concept of independence of twodiscrete random variables.

Part (b):

Given is the joint probability distribution of X and Y.

       Y

X

0

1

2

3

g(X)

0

0.05

0.05

0.10

0

0.20

1

0.05

0.10

0.25

0.10

0.50

2

0

0.15

0.10

0.05

0.30

h(Y)

0.10

0.30

0.45

0.15

1.00

Determine the followings.

      I.      Mean of X and Mean of Y

    II.      Var (X) andVar (Y)

III.      Cov (X, Y)

IV.      Correlation coefficientr.

       Y

X

0

1

2

3

g(X)

0

0.05

0.05

0.10

0

0.20

1

0.05

0.10

0.25

0.10

0.50

2

0

0.15

0.10

0.05

0.30

h(Y)

0.10

0.30

0.45

0.15

1.00

Explanation / Answer

Given is the joint probabilitydistribution of X and Y.

       Y

X

0

1

2

3

g(X)

0

0.05

0.05

0.10

0

0.20

1

0.05

0.10

0.25

0.10

0.50

2

0

0.15

0.10

0.05

0.30

h(Y)

0.10

0.30

0.45

0.15

1.00

Determine the followings.

I.      Mean of X and Mean of Y

E(X)=0*0.2+1*0.5+2*0.3=1.1

E(Y)=0*0.1+1*0.3+2*0.45+3*0.15=1.65

II.      Var (X) and Var (Y)

E(X^2)=0*0.2+(1^2)*0.5+(2^2)*0.3=1.7

Var(X)= E(X^2) -[E(X)]^2 =1.7-1.1^2=0.49

E(Y^2)=0*0.1+1^2*0.3+2^2*0.45+3^2*0.15=3.45

Var(Y) =E(Y^2) - [E(Y)]^2 =3.45-1.65^2=0.7275

III.      Cov (X, Y)

E(XY)=1*1*0.1+1*2*0.25+1*3*0.1+2*1*0.15+2*2*0.1+2*3*0.05=1.9

Cov(X,Y)=E(XY)-E(X)E(Y) = 1.9 -1.1*1.65=0.085

IV.      Correlation coefficient r.

r = Cov(X,Y)/ [x*y] =0.085/[sqrt(0.49*0.7275)] = 0.1424

       Y

X

0

1

2

3

g(X)

0

0.05

0.05

0.10

0

0.20

1

0.05

0.10

0.25

0.10

0.50

2

0

0.15

0.10

0.05

0.30

h(Y)

0.10

0.30

0.45

0.15

1.00

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote