In the game of craps, a player rolls two balanced dice. Thirty-six equally likel
ID: 2922417 • Letter: I
Question
In the game of craps, a player rolls two balanced dice. Thirty-six equally likely outcomes are possible, as shown below
Let A = event the sum of the dice is 7,
B = event the sum of the dice is 11,
C = event the sum of the dice is 2,
D = event the sum of the dice is 3,
E = event the sum of the dice is 12,
F = event the sum of the dice is 8,
G = event doubles are rolled
H = event the sum is less than 2, and
I = even that the sum is at least 2
(NOTE: AN ANSWER MAY BE USED MORE THAN ONCE)
P(A)
P(B)
P(C)
P(D)
P(E)
P(F)
P(G)
P(H)
P(I)
0.002
0.111
0.167
0.239
0.139
0.056
0.660
0.028
1.000
0.258
0.000
- A. B. C. D. E. F. G. H. I. J. K.P(A)
- A. B. C. D. E. F. G. H. I. J. K.P(B)
- A. B. C. D. E. F. G. H. I. J. K.P(C)
- A. B. C. D. E. F. G. H. I. J. K.P(D)
- A. B. C. D. E. F. G. H. I. J. K.P(E)
- A. B. C. D. E. F. G. H. I. J. K.P(F)
- A. B. C. D. E. F. G. H. I. J. K.P(G)
- A. B. C. D. E. F. G. H. I. J. K.P(H)
- A. B. C. D. E. F. G. H. I. J. K.P(I)
A.0.002
B.0.111
C.0.167
D.0.239
E.0.139
F.0.056
G.0.660
H.0.028
I.1.000
J.0.258
K.0.000
Explanation / Answer
A = event the sum of the dice is 7, (3,4) ,(4,3) , (2,5) , (5,2) ,(1,6), (6,1)
P(A) = 6/36 = 1/6 = 0.167 (option C)
B = event the sum of the dice is 11, (5,6), (6,5)
P(B) = 2/36 = 1/18 = 0.056 (Option F)
C = event the sum of the dice is 2, (1,1)
P(C) = 1/36 = 0.028 (Option H)
D = event the sum of the dice is 3, (1,2) , (2,1)
P(D) = 2/36 = 1/18 = 0.056 (option F)
E = event the sum of the dice is 12, (6,6)
P(E) = 1/36 = 0.028 (option H)
F = event the sum of the dice is 8, (4,4), (3,5), (5,3) ,(2,6), (6,2)
P(F) = 5/36 = 0.139 (Option E)
G = event doubles are rolled , (1,1) , (2,2) , (3,3) , (4,4) , (5,5) , (6,6)
P(G) = 1/6 = 0.167 (Option C)
H = event the sum is less than 2, and (No such sample spcae)
P(H) = 0 (OPtion K)
I = even that the sum is at least 2 (All sum are at least 2)
P(I) = 1 (Option I)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.