From the the following transformations choose those that arelinear. A T : M 22 ®
ID: 2938714 • Letter: F
Question
From the the following transformations choose those that arelinear. A
T : M22® R3 where T æ
ç
ç
è é
ê
ê
ë a b c d ù
ú
ú
û ö
÷
÷
ø = [a+bc-3 d, -b-c, 3 c-d] B
T : R2® R3where T([x1, x2]) =[3 x1+3 x2, 0,3 x1] C
T : R2® R2where T([x1, x2]) = [-x1+2 x2, 3] D
T : M22® M33 where T æ
ç
ç
è é
ê
ê
ë a b c d ù
ú
ú
û ö
÷
÷
ø = é
ê
ê
ê
ë -2 a-c -3 d+a -c 0 3 c -2 a a2-2 b -a-2 d 3 a-d ù
ú
ú
ú
û None of the above
From the the following transformations choose those that arelinear. A
T : M22® R3 where T æ
ç
ç
è é
ê
ê
ë a b c d ù
ú
ú
û ö
÷
÷
ø = [a+bc-3 d, -b-c, 3 c-d] B
T : R2® R3where T([x1, x2]) =[3 x1+3 x2, 0,3 x1] C
T : R2® R2where T([x1, x2]) = [-x1+2 x2, 3] D
T : M22® M33 where T æ
ç
ç
è é
ê
ê
ë a b c d ù
ú
ú
û ö
÷
÷
ø = é
ê
ê
ê
ë -2 a-c -3 d+a -c 0 3 c -2 a a2-2 b -a-2 d 3 a-d ù
ú
ú
ú
û None of the above A
T : M22® R3 where T æ
ç
ç
è é
ê
ê
ë a b c d ù
ú
ú
û ö
÷
÷
ø = [a+bc-3 d, -b-c, 3 c-d] B
T : R2® R3where T([x1, x2]) =[3 x1+3 x2, 0,3 x1] C
T : R2® R2where T([x1, x2]) = [-x1+2 x2, 3] D
T : M22® M33 where T æ
ç
ç
è é
ê
ê
ë a b c d ù
ú
ú
û ö
÷
÷
ø = é
ê
ê
ê
ë -2 a-c -3 d+a -c 0 3 c -2 a a2-2 b -a-2 d 3 a-d ù
ú
ú
ú
û None of the above
Explanation / Answer
is not a linear transformation because the arguments band c are multiplied and lead to the failure of linearity. BT : R2® R3where T([x1, x2]) =[3 x1+3 x2, 0,3 x1] is a linear transformation. C
T : R2® R2where T([x1, x2]) = [-x1+2 x2, 3] is not a linear transformation while constant is not of degree1 but of degree0. D
T : M22® M33 where T æ
ç
ç
è é
ê
ê
ë a b c d ù
ú
ú
û ö
÷
÷
ø = é
ê
ê
ê
ë -2 a-c -3 d+a -c 0 3 c -2 a a2-2 b -a-2 d 3 a-d ù
ú
ú
ú
û is not a linear transformation because a2 term ispresent which is not linear. A
T : M22® R3 where T æ
ç
ç
è é
ê
ê
ë a b c d ù
ú
ú
û ö
÷
÷
ø = [a+bc-3 d, -b-c, 3 c-d
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.