Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

solve for A a*A= -Ea + a^(-1) b x*A= -E - a^(-2) b Solution SOLUTION:- GIVEN THA

ID: 2942958 • Letter: S

Question

solve for A
a*A= -Ea + a^(-1) b
x*A= -E - a^(-2) b

Explanation / Answer

SOLUTION:- GIVEN THAT:   a *   A = - E a + a-1 . b ..............................(1) AND                  X * A   = - E     - a-2 . b ................................(2) ----------------------------------------------------------------------------------------------------------------- NOW OPERATING    ( a-1 )     ON BOTH SIDES OF EQUATION (1)   WE HAVE, =>a-1 * ( a * A )    =   a-1 * ( - E a ) + a-1 * ( a-1.b) =>( a-1 *    a ) * A     = - E ( a-1 * a ) +     ( a-1 * a-1) .b   ,   treating   "E" as a constant. =>    1 * A       =   - E ( 1)    +    a-2 . b =>               1 * A      =   - E          +    a-2 . b .............................(3) -------------------------------------------------------------------------------------------------------------------- RELATION (3)   => 1 * A      =   - E          +    a-2 . b    ,   AND RELATION (2)   => X * A = - E        - a-2 . b ----------------------------------------------------------------------------------------------------------------- NOW ADDING THE ABOVE TWO RELATIONS , LAST TERMS GET CANCELLED AND WE HAVE , 1 * A      +    X * A = - 2 E ( 1 + X )   *   A            =    - 2E ................................(4) -------------------------------------------------------------------------------------------------------------------- NOW OPERATING   (1 +X )-1   , ON BOTH SIDES OF RELATION (4)   WE HAVE, (1 +X )-1   * { ( 1 + X )   *   A }       = (1 +X )-1   { - 2E   } { (1 +X )-1   *    ( 1 + X ) } *   A       =    - 2E /   ( 1 +X ) =>    A       =    - 2E /   ( 1 +X ) =>    A       =    - E   /    [ ( 1+X)/2]