Find two linearly independent Frobenius series solutions of : x 2 y\'\' - xy\' +
ID: 2943359 • Letter: F
Question
Find two linearly independent Frobenius series solutions of :
x2y'' - xy' + (x2 + 1)y = 0
For each Frobenius solution, find the first four non-zero terms.
[please try to present solution like what is shown here]
http://s539.photobucket.com/albums/ff360/P_O_Keeffe/?action=view¤t=Frobenius_Examples-1.jpg
http://s539.photobucket.com/albums/ff360/P_O_Keeffe/?action=view¤t=Frobenius_Examples-2.jpg
http://s539.photobucket.com/albums/ff360/P_O_Keeffe/?action=view¤t=Frobenius_Examples-3.jpg
http://s539.photobucket.com/albums/ff360/P_O_Keeffe/?action=view¤t=Frobenius_Examples-4.jpg
http://s539.photobucket.com/albums/ff360/P_O_Keeffe/?action=view¤t=Frobenius_Examples-5.jpg
Explanation / Answer
x^2y - xy + (x^2 + 1)y = 0
x^2y - xy + x^2y + y = 0
2xy + x^2(dy/dx) - [(1)y + x(dy/dx)] + 2xy + x^2(dy/dx) + (dy/dx) = 0
4xy + 2x^2(dy/dx) - y - x(dy/dx) + (dy/dx) = 0
2x^2(dy/dx) - x(dy/dx) + (dy/dx) = y - 4xy
(dy/dx)[2x^2 - x + 1] = y(1-4x)
dy/y = [(1 - 4x)/(2x^2 - x + 1)](dx) let (2x^2 - x + 1) = u
Integrate the both sides of equation (4x - 1)dx = du
lny = [-1(4x - 1)/u](du/(4x - 1)) dx = du/(4x - 1)
After simplification
lny = -du/u
lny = -lnu
therefore
lny = -ln(2x^2 - x + 1)
lny = ln[1/(2x^2 - x + 1)]
Taking anti-log on both sides
y = [1/(2x^2 - x + 1)]
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.