Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Question 2: Download the Excel data file \"Arlington_Homes\" from the folder \"D

ID: 2947237 • Letter: Q

Question

Question 2:

Download the Excel data file "Arlington_Homes" from the folder "Data" under "Chapter 12."

a) read the data file in R.

b) using R, answer question 65 (a, b, and c) on page 411 of your book. Run the regression, show the estimates and test. Write what you are testing using a comment in the R program.

Question #65. link for page 411 #65 https://imgur.com/s0SgxP3

please show every step for R frmulas

Price

Sqft

Beds

Baths

Col

840000

2768

4

3.5

1

822000

2500

4

2.5

1

713000

2400

3

3

1

689000

2200

3

2.5

1

685000

2716

3

3.5

1

645000

2524

3

2

1

625000

2732

4

2.5

0

620000

2436

4

3.5

1

587500

2100

3

1.5

1

585000

1947

3

1.5

1

583000

2224

3

2.5

1

569000

3262

4

2

0

546000

1792

3

2

0

540000

1488

3

1.5

0

537000

2907

3

2.5

0

516000

1951

4

2

1

511000

1752

3

1.5

1

510000

1727

3

2

1

495000

1692

3

2

0

463000

1714

3

2

0

457000

1650

3

2

0

451000

1685

3

2

0

435000

1500

3

1.5

1

431700

1896

2

1.5

0

414000

1182

2

1.5

0

401500

1152

3

1

0

399000

1383

4

1

0

380000

1344

4

2

0

380000

1272

3

1

0

375900

2275

5

1

0

372000

1005

2

1

0

367500

1272

3

1

0

356500

1431

2

2

1

330000

1362

3

1

0

330000

1465

3

1

0

307500

850

1

1

0

Price

Sqft

Beds

Baths

Col

840000

2768

4

3.5

1

822000

2500

4

2.5

1

713000

2400

3

3

1

689000

2200

3

2.5

1

685000

2716

3

3.5

1

645000

2524

3

2

1

625000

2732

4

2.5

0

620000

2436

4

3.5

1

587500

2100

3

1.5

1

585000

1947

3

1.5

1

583000

2224

3

2.5

1

569000

3262

4

2

0

546000

1792

3

2

0

540000

1488

3

1.5

0

537000

2907

3

2.5

0

516000

1951

4

2

1

511000

1752

3

1.5

1

510000

1727

3

2

1

495000

1692

3

2

0

463000

1714

3

2

0

457000

1650

3

2

0

451000

1685

3

2

0

435000

1500

3

1.5

1

431700

1896

2

1.5

0

414000

1182

2

1.5

0

401500

1152

3

1

0

399000

1383

4

1

0

380000

1344

4

2

0

380000

1272

3

1

0

375900

2275

5

1

0

372000

1005

2

1

0

367500

1272

3

1

0

356500

1431

2

2

1

330000

1362

3

1

0

330000

1465

3

1

0

307500

850

1

1

0

Explanation / Answer

Solutiona:

To read data:

library(readxl)
Arlington_Homes <- read_excel("C:/Users/M1045151/Downloads/Arlington_Homes.xlsx")
View(Arlington_Homes)

dim(Arlington_Homes)

glimpse(Arlington_Homes)

Output:

Observations: 36
Variables: 5
$ Price <dbl> 840000, 822000, 713000, 689000, 685000, 645000, 625000, 620000, 587500, 585000, 5...
$ Sqft <dbl> 2768, 2500, 2400, 2200, 2716, 2524, 2732, 2436, 2100, 1947, 2224, 3262, 1792, 148...
$ Beds <dbl> 4, 4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 4, ...
$ Baths <dbl> 3.5, 2.5, 3.0, 2.5, 3.5, 2.0, 2.5, 3.5, 1.5, 1.5, 2.5, 2.0, 2.0, 1.5, 2.5, 2.0, 1...
$ Col <dbl> 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, ...
Solutionb:

Rcode to get the linear regression:

regmod <- lm(Arlington_Homes$Price ~Arlington_Homes$Sqft+Arlington_Homes$Beds+Arlington_Homes$Baths+Arlington_Homes$Col)
summary(regmod)

Call:

lm(formula = Arlington_Homes$Price ~ Arlington_Homes$Sqft + Arlington_Homes$Beds +

Arlington_Homes$Baths + Arlington_Homes$Col)

Residuals:

Min 1Q Median 3Q Max

-157118 -47479 -4742 38849 168327

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 165888.66 52353.54 3.169 0.00343 **

Arlington_Homes$Sqft 91.68 32.34 2.834 0.00801 **

Arlington_Homes$Beds 4372.36 18561.84 0.236 0.81533

Arlington_Homes$Baths 66619.61 24659.48 2.702 0.01109 *

Arlington_Homes$Col 74557.88 27374.26 2.724 0.01051 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 68440 on 31 degrees of freedom

Multiple R-squared: 0.777, Adjusted R-squared: 0.7483

F-statistic: 27.01 on 4 and 31 DF, p-value: 1.031e-09

Regression equation is

price=165888.66+91.68*sqft+4372.36 *Beds+ 66619.61*Baths+ 74557.88 *col

sqft,Beds,cola re significanct varaibles

F=27.01

p= 1.031e-09

p<0.05

Model is significant.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote