Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

THe Golfing Statistics provides data for a portion of the 2010 professional seas

ID: 2948719 • Letter: T

Question

THe Golfing Statistics provides data for a portion of the 2010 professional season for the top 25 golfers.

A) Find the best multiple regression model for predicting earnings/event as a function of the remaining variables.

B) Find the best multiple regression model for predicting average score as a function of the other variables except earning sand events.

Golfing Statistics

Golfing Statistics

Earnings/Event Events Avg. Score GIR (%)* Driving Distance Driving Accuracy (%) Putts/Round $239,493.68       22           70.37       67.9                 288.4                         60.2             31.82 $177,249.18       28           69.43       69.4                 286.9                         67.9             31.30 $218,619.18       22           70.23       67.1                 276.0                         71.0             31.81 $186,380.08       24           70.46       68.0                 308.5                         56.4             31.81 $209,511.75       20           69.78       68.3                 282.9                         68.5             31.43 $181,987.29       21           70.34       65.1                 299.1                         52.7             31.72 $162,536.13       23           69.92       66.3                 287.8                         65.2             31.68 $174,534.95       21           70.25       65.3                 277.0                         62.4             31.52 $135,353.70       27           70.64       68.0                 291.8                         67.9             32.35 $212,540.82       17           69.93       68.7                 294.2                         61.3             31.55 $297,079.50       12           70.26       69.3                 298.7                         61.3             32.31 $168,904.45       20           69.96       66.0                 291.4                         64.8             31.79 $135,791.58       24           70.21       68.5                 309.8                         55.7             31.73 $133,695.52       23           70.53       68.2                 289.1                         64.8             31.86 $112,192.04       26           70.59       66.5                 279.7                         71.2             31.30 $215,121.67       12           70.22       66.5                 292.4                         60.1             32.29 $183,922.93       14           70.86       62.9                 287.2                         52.0             31.99 $150,251.76       17           70.94       66.2                 300.0                         62.6             32.31 $183,356.69       13           71.13       66.9                 291.7                         67.1             32.06 $130,274.35       17           71.53       62.5                 286.8                         62.7             32.47 $286,285.40        5           69.73       69.4                 308.4                         70.6             32.09 $72,708.05       19           70.79       61.9                 292.1                         56.7             31.50 $99,597.31       13           71.07       64.1                 295.8                         57.2             31.52 $85,557.56        9           71.10       64.1                 290.4                         69.3             31.95 $46,406.25        8           71.24       61.1                 289.9                         65.5             32.31 *GIR: Greens in Regulation

Explanation / Answer

Here i copied all data intoExcel:

A) then go to data analysis-> Regression -> In place Input Y range input vector Earnings/Event -> In place of Input X range input all vector other than Earnings/Event-> In cell of labels tick mark. -> Also tick for residuals,standardies residuals -> Select output range -> Then press ok.

Then we get following output.

Thus the regression equation is:

Earnings/Event= (-4747.681755)*Event-(45049.73715)*Avg.score+(22416.76093)*GIR-

(3429.3112)*Driving Distance-(5413.9034)*Driving Accuracy+

(57949.81073)*Putts/Round+1437821.623

B) then go to data analysis-> Regression -> In place Input Y range input vector Avg. Score -> In place of Input X range input all vector other than Avg. Score-> In cell of labels tick mark. -> Also tick for residuals,standardies residuals -> Select output range -> Then press ok.

The regression equation :

Avg.score=(-0.015690723)*Event-(5.072*10^(-6))*Earnings/Event-(0.01239611)*GIR-

(0.012270372)*Driving Distance-(0.02112577)*Driving Accuracy+

(0.74837883)*Putts/Round+53.49098873

SUMMARY OUTPUT Regression Statistics Multiple R 0.907422179 R Square 0.82341501 Adjusted R Square 0.764553347 Standard Error 29533.55374 Observations 25 ANOVA df SS MS F Significance F Regression 6 73209748917 12201624820 13.98898648 6.49787E-06 Residual 18 15700154337 872230796.5 Total 24 88909903254 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept 1437821.623 1347403.762 1.067105246 0.300028237 -1392968.633 4268611.879 -1392968.633 4268611.879 Events -4747.681755 1287.532815 -3.687425828 0.001685195 -7452.687819 -2042.675692 -7452.687819 -2042.675692 Avg. Score -45049.73715 19510.79217 -2.308965047 0.033023094 -86040.39037 -4059.083927 -86040.39037 -4059.083927 GIR (%)* 22416.76093 4698.689378 4.770853981 0.000152822 12545.18087 32288.34099 12545.18087 32288.34099 Driving Distance -3429.311291 995.8982298 -3.443435472 0.002898633 -5521.615828 -1337.006753 -5521.615828 -1337.006753 Driving Accuracy (%) -5413.9034 1450.334544 -3.732865237 0.001522986 -8460.943204 -2366.863596 -8460.943204 -2366.863596 Putts/Round 57949.81073 23557.912 2.459887393 0.024242869 8456.474262 107443.1472 8456.474262 107443.1472 RESIDUAL OUTPUT Observation Predicted Earnings/Event Residuals Standard Residuals 1 214353.3044 25140.3756 0.982936408 2 195162.1174 -17912.93735 -0.700358602 3 186200.664 32418.51596 1.267496562 4 154109.3185 32270.76149 1.26171967 5 210720.1049 -1208.354893 -0.047244164 6 155801.2113 26186.07871 1.023821225 7 160886.2832 1649.846847 0.064505581 8 176021.9942 -1487.04422 -0.058140337 9 158059.8278 -22706.12781 -0.887762382 10 234355.2581 -21814.43814 -0.85289917 11 285287.2656 11792.23444 0.461051846 12 162796.8305 6107.619451 0.23879522 13 171275.7761 -35484.1961 -1.387358281 14 184136.2119 -50440.69187 -1.972126164 15 94216.33916 17975.70084 0.702812524 16 251264.6734 -36143.00345 -1.413116278 17 176537.2319 7385.698139 0.288765439 18 149926.8976 324.8624437 0.012701446 19 165663.1729 17693.5171 0.691779726 20 94403.02563 35871.32437 1.402494191 21 248276.4951 38008.90487 1.486069144 22 62891.1652 9816.884801 0.383819782 23 113843.7961 -14246.48611 -0.557007982 24 109411.4995 -23853.93946 -0.93263943 25 83751.35566 -37345.10566 -1.460115975